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RESUMO 

 

Este trabalho tem como objetivo realizar simulações numéricas através do 

Método de Elementos Espectrais para o caso de um cilindro rígido sujeito a um 

escoamento incompressível com um número de Reynolds relativamente baixo. Para 

que fosse possível fazer simulações próximas de um caso real, primeiramente foi 

realizado um teste de convergência de modo a obter uma malha que produzisse um 

resultado próximo do real a um custo computacional baixo. Em tal teste foi utilizado 

um cilindro rígido fixo. Após as simulações de convergência, foram realizadas as 

simulações para os casos de movimento com um e dois graus de liberdade de um 

cilindro rígido. Posteriormente, foram feitas simulações para um cilindro rígido em 

escoamentos com dois graus de liberdade considerando uma profundidade na 

direção deste. Os principais resultados obtidos foram as respostas da amplitude do 

movimento (nas direções   e  ) e do arrasto exercido no cilindro em função da 

velocidade do escoamento.  
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ABSTRACT 

 

This work has the purpose of performing numerical simulations through Spectral 

Element Method for the case of a stiff cylinder subject to an incompressible flow of 

low Reynolds number. In order to perform numerical simulations that are close to a 

real situation, a convergence test was conducted at a first moment to obtain a mesh 

that would be able to provide results close to reality at a low computational cost. A 

fixed stiff cylinder was used in such test. After that, 1 and 2 DOF movement of a stiff 

cylinder were performed. Simulations for a stiff cylinder in a 2 DOF movement with a 

depth in cylinder’s axis direction were performed afterwards. The main obtained 

results were the amplitude of movement (in   and   directions) and the drag 

coefficient of the cylinder as function of velocity of the flow. 
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1. Introdução 

 

O principal objetivo deste trabalho é obter resultados de simulações do 

escoamento ao redor de um cilindro rígido e avaliar a sua resposta em relação aos 

seguintes parâmetros: coeficiente de arrasto, frequência de emissão de vórtices e 

amplitude (transversal e longitudinal). Este relatório apresentará as abordagens para 

simulações em movimentos com um e dois graus de liberdade e um movimento de 

caráter tridimensional no qual se considera uma profundidade na direção z em um 

movimento com dois graus de liberdade.  
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2. Motivação 

 

O problema relacionado a vibrações induzidas por vórtices tem se tornado um tema 

de grande relevância nos dias de hoje devido à crescente pesquisa na área de 

extração de petróleo em águas profundas. Para esta aplicação, são utilizadas longas 

estruturas cilíndricas com a função de extrair petróleo do leito marítimo. Tais 

estruturas são conhecidas como risers e seu projeto, construção, instalação e 

manutenção são muito caros. Por isso, o estudo completo dos efeitos que as 

vibrações induzidas pelo escoamento causam nos risers é de grande importância, 

tendo em vista todos os fatores econômicos envolvidos. 
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3. Fundamentos teóricos 

3.1 Escoamento ao redor de um cilindro 

 

Esta seção tem como objetivo explicar as características que são observadas em um 

escoamento ao redor de um cilindro. Serão, portanto, identificadas todas as 

diferentes regiões presentes nesse escoamento assim como serão descritos os seus 

respectivos comportamentos no escoamento. 

 

3.1.1 Regiões de escoamento perturbado 

  

As regiões de escoamento perturbado correspondem às regiões ao redor do corpo 

cilíndrico que são afetadas de alguma forma pela presença deste. Existem 

basicamente 4 tipos de regiões, conforme ilustra a figura 1: 

 

 

Figura 1 - Regiões de escoamento perturbado. Extraído de ÁSSI (2005). 

 

 

(1) uma região estreita de escoamento retardado;  

(2) duas camadas limite simétricas em relação ao eixo transversal do cilindro 

que está alinhado à direção do escoamento; 
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(3) duas regiões laterais de fluido deslocado e acelerado; 

(4) uma região de esteira, a jusante no escoamento. 

 

A região de escoamento retardado é uma consequência do ponto de estagnação 

localizado logo na frente do corpo cilíndrico.  

As camadas limite presentes na região (2) estão submetidas a um gradiente de 

pressão favorável em sua parte frontal e à medida que se percorre essas camadas, 

o gradiente de pressão se torna adverso. Este último fenômeno faz com que a 

aderência dessas camadas ao cilindro seja prejudicada e provoque sua separação 

do corpo cilíndrico, formando camadas cisalhantes livres. As camadas cisalhantes 

delimitam a região de esteira próxima. 

As regiões laterais (3) compreendem a parte de escoamento que é deslocada e 

acelerada pela presença do corpo. Como a esteira possui baixa pressão, ocorre o 

movimento do fluido da região (3) em direção a ela. 

A região (4) corresponde à esteira e nela o escoamento está totalmente separado e 

com velocidade média menor que a incidente. Na região de esteira próxima 

(localizada próxima ao cilindro), ocorre a formação de bolhas de recirculação, que 

são convectadas ao longo da esteira. Além disso, é nesse local que ocorre os 

principais fenômenos que dão origem às vibrações induzidas pelo escoamento. 

 

3.2 Fenômeno de separação e desprendimento de vórtices 

 

O número de Reynolds tem importância fundamental em escoamentos externos em 

fluidos viscosos. Este número relaciona a magnitude das forças inerciais e viscosas 

presentes no escoamento, sendo definido pela seguinte relação: 

 

   
    

 
  Eq. 3.1 

onde 

 

 : densidade do fluido 

  : velocidade do escoamento incidente ao longe 

 : diâmetro do cilindro 
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 : viscosidade dinâmica do fluido 

 

No caso do escoamento ao redor de um cilindro, observam-se sucessivas transições 

à medida que o número de Reynolds aumenta. 

Quando Re é aproximadamente 200, ocorre uma transição para o regime turbulento 

na esteira, porém ainda sem afetar a camada limite e a região de esteira próxima. A 

turbulência de desenvolve aos poucos na região próxima ao cilindro, entretanto a 

camada limite e as camadas cisalhantes permanecem laminares. 

A transição para regime turbulento alcança a camada limite no ponto de separação 

quando o número de Reynolds do escoamento atinge Re ≈ 105, provocando uma 

diminuição repentina no arrasto. Se Re for aumentado ainda mais, a transição para o 

regime turbulento acaba se movendo para o ponto de estagnação frontal do cilindro, 

criando assim uma camada limite turbulenta completa na região de separação. A 

ocorrência de turbulência na camada limite eleva o valor das componentes cinéticas 

do escoamento, permitindo que a camada limite resista mais ao gradiente 

desfavorável de pressão. Isso faz com que a separação seja deslocada para uma 

região mais a jusante na parede do cilindro e, como consequência disso, a região 

que é exposta ao escoamento descolado (baixas pressões) será menor, provocando 

o estreitamento da esteira e a diminuição no arrasto. 

O estado do escoamento pode ser completamente laminar, transição na esteira, 

transição nas camadas cisalhantes, transição nas camadas limite ou completamente 

turbulento. 

3.2.1 Escoamento completamente laminar 

 

No regime completamente laminar, pode ocorrer um escoamento altamente viscoso, 

que acontece quando o número de Reynolds é muito baixo, pois as forças inerciais 

não tem magnitude suficiente para vencer as forças viscosas. Nesse tipo de 

escoamento (conhecido como creeping flow), as camadas limite não se separam da 

superfície da parede cilíndrica em nenhum ponto. Entretanto, à medida que se eleva 

o número de Reynolds, verifica-se a ocorrência da separação do escoamento, 

quando bolhas de recirculação são formadas na região de esteira próxima. As 

camadas cisalhantes livres se encontram na extremidade jusante destas bolhas, no 
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local conhecido como ponto de confluência. Estas bolhas permanecem estáveis 

enquanto o escoamento está submetido a velocidades baixas.  

A esteira começa a se tornar instável quando Re atinge a faixa entre 30 e 48, 

causando o alongamento das bolhas de recirculação. A partir de Re = 65, o 

comportamento instável é mais visível e percebe-se que as bolhas são convectadas 

para a esteira ao longe conforme uma oscilação harmônica. Ao final desse estado, 

pode-se observar a emissão alternada de uma carreira de vórtices laminares, 

conforme ilustra a figura 2. Esta esteira de vórtices é conhecida como esteira de 

vórtices de von Kárman e possui um papel fundamental quando se estuda o 

fenômeno de vibrações induzidas pelo escoamento em cilindros. 

 

 

Figura 2 - Início da instabilidade da esteira em regime laminar. Adaptado de Batchelor (1967). Extraído de 
ÁSSI (2005). 

3.2.2 Transição na esteira 

 

À medida que Reynolds se aproxima de 180, a esteira começa a apresentar sinais 

de turbulência e deixa de ser bidimensional. Os fenômenos de transição serão 

detalhados ao longo do desenvolvimento deste trabalho. Na figura 3, são ilustradas 

imagens de esteiras transicionais. 
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Figura 3 - Transição na esteira. (a) Re = 190  (b) Re = 340. Extraído e adaptado de Zdravkovich (1997). 

3.2.3 Transição nas camadas cisalhantes 

 

Esta segunda transição ocorre ao longo das camadas cisalhantes livres e neste 

momento as camadas limite ainda estão no regime laminar. Esta transição pode ser 

dividida em três fases: 

 

(i) desenvolvimento de ondas de transição (350 - 400 < Re < 1x103 - 2x103) 

(ii) formação de turbilhões de transição (1x103 - 2x103 < Re < 2x104 - 4x104) 

(iii) mudança rápida para a turbulência (2x104 - 4x104 < Re < 1x105 - 2x105) 

 

3.2.4 Transição nas camadas limite 

 

É nessa transição que ocorre a repentina redução no arrasto, conhecida como crise 

do arrasto. A transição na camada limite pode ser dividida em 5 etapas: 

 

(i) regime pré-crítico (1x105 - 2x105 < Re < 3x105 – 3,4x105) 

(ii) regime de uma bolha (3x105 - 3,4x105 < Re < 3,8x105 - 4x105) 

(iii) regime de duas bolhas (3,8x105 - 4x105< Re < 5x105 - 1x106) 

(iv) regime supercrítico (5x105 - 1x106< Re < 3,5x106 - 6x106) 

(v) regime pós-crítico (3,5x106 - 6x106< Re < não conhecido) 

 

  



8 
 

3.2.5 Escoamento completamente turbulento 

 

O estado de escoamento completamente turbulento só é alcançado quando todas as 

regiões de escoamento perturbado se tornam turbulentas. Não se tem conhecimento 

sobre o a faixa de valor de Re de início deste tipo de regime e seu valor final teórico 

é quando Re tende ao infinito. Tal situação corresponde ao último estado de 

escoamento. 

 

3.3 Vibrações Induzidas pelo Escoamento 

 

As vibrações induzidas pelo escoamento (VIE) ocorrem na maioria dos casos em 

que estruturas de perfil rombudo estão submetidas a escoamentos fluidos. Em 

algumas situações, tais vibrações podem causar danos ou até destruir a estrutura, 

sendo que em outras, elas produzem movimentos oscilatórios úteis. Os diversos 

tipos de VIE são classificados de acordo com sua natureza. Neste trabalho serão 

discutidas apenas as vibrações induzidas por vórtices (VIV). 

 

3.3.1 Vibrações Induzidas por Vórtices 

 

Quando um cilindro é flexível ou está montado elasticamente, sua frequência natural 

pode ser excitada pelo desprendimento de vórtices. Assim, movimentos de alta 

amplitude podem ocorrer à medida que a frequência da geração de vórtices se 

aproxima da frequência natural do cilindro. Estes movimentos são as vibrações 

induzidas por vórtices (VIV) e são causadas pela interação da estrutura cilíndrica 

com os vórtices gerados na esteira. O desprendimento de vórtices em um cilindro 

oscilante é semelhante ao fenômeno em um cilindro estacionário, onde os vórtices 

de desprendem na frequência de Strouhal ou próximo a ela. 

O termo VIV geralmente se refere a vibrações que são estáveis e auto-limitantes, 

resultando de desprendimento de vórtices em grande escala. A natureza auto-

limitante das vibrações induzidas por vórtices é provocada por um equilíbrio entre as 

forças de excitação e o amortecimento viscoso. 
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As oscilações estruturais causadas por VIV normalmente possuem uma amplitude 

moderada. Deste modo, estas oscilações não são elevadas o suficiente para 

provocar uma fratura catastrófica inicialmente, porém, após um certo número de 

ciclos, o material pode falhar por fadiga. Portanto, a principal questão envolvendo 

estruturas que estão submetidas a VIV é a fadiga.  

O fenômeno de vibrações induzida por vórtices está tipicamente associado a 

estruturas longas e relativamente finas as quais possuem um elevado número de 

frequências naturais. Tais estruturas podem ser encontradas, por exemplo, na 

conexão entre as plataformas de petróleo e o leito oceânico, sendo que estas 

conexões estão no formato cilíndrico. Porções destas estruturas cilíndricas longas 

ficam suspensas e, portanto, suscetíveis a vibrações causadas por correntes 

marítimas. 

 

3.3.2 Vibrações com um grau de liberdade 

 

No caso de VIV com um grau de liberdade, um cilindro circular elasticamente 

montado está situado em uma corrente livre de fluido, como é mostrado na figura 4. 

 

 

Figura 4 - Extraído de DAHL (2008) 

O cilindro possui massa m e a montagem elástica possui rigidez k e amortecimento 

b. A força fluida incidente no cilindro na direção transversal é denominada L. Esta 

representação corresponde a um sistema massa-mola-amortecedor e sua equação 

de movimento é dada por: 

 

                 Eq. 3.2 
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A frequência natural (  ) da estrutura no vácuo é fornecida pela seguinte equação: 

 

    
 

 
  Eq. 3.3 

 

 

Uma boa aproximação para a força L(t) e a resposta y(t) do cilindro é fornecida pelas 

equações 3.4 e 3.5, onde L0 é a magnitude da força fluida, y0 é a amplitude de 

oscilação do corpo, ω é a frequência angular de oscilação do corpo e φ é o ângulo 

de fase entre a força de excitação fluida e o deslocamento do cilindro. Segundo 

Blevins (1990), os fenômenos de VIV podem ser modelados como oscilações 

harmônicas, sem prejuízos às características deste fenômeno. 

 

 

                  Eq. 3.4 

 

                 Eq. 3.5 

 

Nos casos em que o cilindro oscila em uma corrente livre, este sofre uma aceleração 

através do fluido, provocando também a aceleração da porção de fluido que está ao 

redor de seu corpo. Esta aceleração do fluido envolto no corpo resulta em uma força 

que está em fase com a força inercial presente do membro esquerdo da equação 

3.2. Tal força resultante é conhecida como força ideal da massa adicionada. O 

desprendimento de vórtices na região de esteira do cilindro pode também causar 

forças do fluido em fase com a força de inércia da estrutura, resultando em uma 

outra parcela de força do fluido que aparece como força inercial. Entretanto, tais 

forças não podem ser distinguidas individualmente através da medição de forças 

hidrodinâmicas. Por isso, a soma de todas as forças de fluido do membro direito que 

estão em fase com as de inércia do membro esquerdo da equação 3.2 é 

denominada força efetiva da massa adicionada. 
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3.3.3 Parâmetros adimensionais relevantes 

 

A seguir, são apresentados importantes parâmetros adimensionais relacionados a 

vibrações induzidas por vórtices para sistemas de um grau de liberdade. 

 

a) Amplitude reduzida (  ) 

É a relação entre a amplitude de oscilação do cilindro e seu diâmetro. A amplitude 

de oscilação é denotada por   ou   . 

 

   
  

 
 

 

 
 

b) Velocidade reduzida (  ) 

É dada pela relação entre a velocidade do escoamento incidente (  ), a frequência 

natural de oscilação do sistema no vácuo (   ) e o diâmetro do cilindro (D). 

 

   
  

    
 

 

c) Parâmetro de massa (  ) 

É dado pela relação entre a massa ( ) de todo o sistema que oscila e a massa do 

volume de fluido deslocado pelo cilindro (  ). Na relação a seguir    é o 

comprimento submerso do cilindro. 

 

   
 

  
 

 

   

    
 

 

d) Frequência reduzida (  
 ) 

É a razão entre a frequência de oscilação do cilindro ( ) e a frequência natural do 

sistema no vácuo (   ). 
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e) Parâmetro de amortecimento ( ) 

Representa a relação entre o amortecimento estrutural ( ) e o amortecimento crítico 

(        ). 

 

  
 

   
 

 

    
 

 

f) Coeficiente de massa adicional (  ) 

É dado pela relação entre a massa adicionada efetiva (  ) e a massa do volume de 

fluido deslocado pelo cilindro. 

 

   
  

   

    
 

 

g) Coeficiente de arrasto (  ) 

Este parâmetro é fornecido pela relação entre a força de arrasto (  ), a pressão de 

estagnação e a área projetada do cilindro. 

 

   
  

 
    

    

 

 

h) Coeficiente de sustentação (  ) 

Este parâmetro é fornecido pela relação entre a força de sustentação (  ), a pressão 

de estagnação e a área projetada do cilindro. 

 

   
  

 
    

    

 

 

3.3.4 Fenômeno de sincronização (Lock-in) 

  

O fenômeno de sincronização (lock-in, no inglês) é classicamente definido como o 

regime no qual a frequência de emissão de vórtices (  ) é capturada pela frequência 
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 , sendo que a sincronização acontece no momento em que       . Uma 

observação importante que deve ser citada é que    representa a frequência de 

emissão de vórtices para um cilindro oscilando. 

Em cilindros montados elasticamente, existe a possibilidade de a esteira sincronizar 

com o movimento do cilindro. A instabilidade natural do escoamento ocorre na 

frequência de Strouhal. Uma vez que a estrutura se move, a frequência de emissão 

de vórtices pode ser capturada pela frequência de oscilação da estrutura, dentro de 

uma banda de frequência em torno da frequência de Strouhal. A banda de 

frequência cresce à medida que a amplitude do movimento aumenta. O fato de a 

esteira seguir a oscilação de frequência da estrutura resulta em alterações 

substanciais nas forças de massa adicional, podendo conduzir a frequência natural 

efetiva do sistema a valores diferentes da frequência natural nominal. Após isso, um 

equilíbrio dinâmico é atingido. 

Quando a estrutura está sob o fenômeno de sincronização, a frequência de 

excitação da estrutura (   ) é igual à sua frequência natural ajustada por um fator 

relacionado aos efeitos de massa adicional do fluido, como é mostrado na equação 

3.6. 

 

     
 

    
   Eq. 3.6 

 

Ao dividir     pela frequência natural e adimensionalisando a massa, tem-se a 

seguinte equação: 

 

       
  

     
  Eq. 3.7 

 

A equação 3.7 mostra que a condição de lock-in é bastante afetada pelo parâmetro 

de massa e pelo coeficiente de massa adicional. Em sistemas expostos ao ar,    é 

elevado enquanto    é relativamente pequeno. Nesses casos, a frequência de 

excitação possui quase o mesmo valor da frequência natural da estrutura. 

Entretanto, em estudos recentes sobre os efeitos do parâmetro de massa, Khalak; 

Williamson (1999) mostraram que, para parâmetros de massa baixos, a frequência 
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de excitação se afasta da frequência natural da estrutura. A diferença relativa entre o 

parâmetro de massa e o coeficiente de massa adicionada se revela importante em 

sistemas com parâmetro de massa baixo, pois, nesta situação, a massa adicionada 

provocaria uma alteração significativa na frequência de excitação da estrutura  

 

3.3.5 Forças atuantes no cilindro 

 

Estudos experimentais de um cilindro oscilando em um grau de liberdade mostram 

que a força L, variável no tempo, pode ser representada por uma função senoidal 

assim como o movimento y(t) do cilindro. Sendo assim, a solução particular da eq. 

3.2 deve ser uma função senoidal, fornecendo expressões para o movimento do 

cilindro (y) e para a força de sustentação (L). Logo, tem-se: 

                 Eq. 3.8 

 

                    Eq. 3.9 

 

  : Amplitude do movimento na direção y 

  : Amplitude da força de sustentação 

 : ângulo de diferença de fase entre o movimento na direção y e a força de 

sustentação 

 

A eq. 3.9 pode ser expandida em termos de senos e cossenos, resultando na 

seguinte expressão: 

 

                                                     Eq. 3.10 

 

Na forma adimensional, a amplitude da força de sustentação é dada em termos do 

coeficiente de sustentação,   . O coeficiente de sustentação pode ser composto por 

dois termos, sendo que um deles em fase com a velocidade e o outro em fase com a 

aceleração, como está definido nas equações a seguir: 

 

                          Eq. 3.11 
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                          Eq. 3.12 

   : componente do coeficiente de sustentação em fase com a velocidade 

   : componente do coeficiente de sustentação em fase com a aceleração 

 

Substituindo as equações 3.8 e 3.9 na equação 3.2 e deixando esta em sua forma 

adimensional, tem-se as relações entre a amplitude do movimento e as forças fluidas 

atuantes no cilindro. Sarpkaya (1977), Bearman (1984) e Khalak;Williamson (1996) 

mostram esta derivação em detalhe, embora a forma desta solução possa ser 

apresentada em diversas maneiras. As soluções destas equações representadas em 

termos da amplitude adimensional e do coeficiente de massa adicionada são 

fornecidas por: 

  

 
 

   
    

    

  
   

   Eq. 3.13 

   
    

 

 
       

   Eq. 3.14 

 

O coeficiente de massa adicionada (  ), que está relacionado com a força de 

sustentação em fase com a aceleração, é uma função da amplitude e da frequência. 

Além disso, a amplitude do movimento do cilindro está relacionada com a força de 

sustentação em fase com a aceleração e é afetada pela velocidade reduzida 

nominal (   ), a razão entre a frequência de excitação e a frequência natural (    ), 

o parâmetro de massa (  ) e o parâmetro de amortecimento ( ). 

 

3.3.6 Vibrações com dois graus de liberdade 

 

No estudo na vibração de um cilindro em dois graus de liberdade, os movimentos do 

cilindro nas direções longitudinal (paralela) e transversal ao escoamento são 

senoidais. Além disso, o sistema é modelado como sendo massa-mola-amortecedor 

em dois graus de liberdade, como é visto na seguinte figura: 
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Figura 5 - Sistema massa-mola-amortecedor em dois graus de liberdade (DAHL, 2008) 

 

As equações de movimento de um cilindro rígido para dois graus de liberdade são 

dadas por: 

 

 

                            Eq. 3.15 

 

                             Eq. 3.16 

 

                           Eq. 3.17 

 

                             Eq. 3.18 

 

 

Como é visto nas equações 3.17 e 3.18, os movimentos longitudinal e transversal 

são representados por senóides defasadas entre si por um ângulo  . O acoplamento 

entre as equações diferenciais de movimento (eqs. 3.15 e 3.16) se dá pela relação 

entre a força de sustentação ( ) e a força de arrasto (  ). Os parâmetros de força 

para o movimento longitudinal são calculados da mesma maneira do movimento 

transversal, porém deve-se considerar a frequência como sendo o dobro à 

correspondente ao movimento transversal. 
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3.3.7 Vibração induzida por vórtices em cilindros flexíveis 

 

Um riser (cilindro flexível) pode ser modelado como uma viga sob tensão devido a 

uma força fluida externa, conforme feito por Mukundan (2008). Desta maneira, 

define-se alguns parâmetros utilizados na sua modelagem: 

 

   comprimento do cilindro flexível 

   massa por unidade de comprimento 

   amortecimento estrutural 

    rigidez flexional 

 

Como os movimentos provocados por VIV possuem amplitudes da ordem do 

diâmetro do cilindro flexível, a dinâmica estrutural pode ser descrita utilizando-se de 

um modelo linear. A figura 6 a seguir mostra um cilindro flexível modelado como uma 

viga sob tensão, esticado ao longo da direção z. 

 

 

Figura 6 - Um cilindro flexível modelado como uma viga. Extraído de MUKUNDAN, 2008 

 

 

A equação governante da oscilação transversal desta viga entre     e    , sob 

uma tensão T e uma força fluida        variante no tempo na direção y é dada pela 

seguinte expressão: 

 

 
   

   
  

  

  
 

 

  
  

  

  
  

  

      
   

                        Eq. 3.19 

 

A força       , variante no tempo, é uma função do movimento da estrutura e tem 

uma origem hidrodinâmica. Entretanto, a oscilação da estrutura é sincronizada com 
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as forças oriundas do VIV quando a reação é temporariamente estacionária. O 

movimento de resposta em regime permanente de um cilindro flexível pode ser 

escrito na seguinte forma: 

 

                      Eq. 3.20 

 

A força fluida        pode ser escrita através de uma aproximação aonde assume-se 

que segmentos do cilindro flexível se comportam como cilindros rígidos. Usando esta 

aproximação, a parte harmônica da força fluida é escrita em duas partes, como é 

descrito a seguir: 

 

           
   

      

 
          

   

 
          

      
      

 
        

    

 
  

    

      

        Eq. 3.21 

 

 

onde, 

 

    : Velocidade do escoamento local (assumida como constante), 

  : densidade do fluido. 

 

De acordo com a equação anterior, uma parte da força está em fase com a 

velocidade e a outra parte, em fase com a aceleração (força de massa adicionada). 

O coeficiente de massa adicional    (obtido experimentalmente) e o coeficiente de 

sustentação em fase com a velocidade     podem ser usados na estimativa da força 

de excitação que o fluido exerce sobre o cilindro. Uma observação que deve ser feita 

é que, neste caso, estes coeficientes são função da amplitude reduzida local (
      

 
) e 

da velocidade reduzida local (      , a qual é definida por: 

 

      
      

  
   Eq. 3.22 
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Substituindo as equações 3.20 e 3.21 na equação 3.19, temos: 

 

             
 

  
  

  

  
  

  

   
   

   

   
             

   

 
          

       22  ( ) ( )       

Eq. 3.23 

 

A equação 3.23 pode ser reescrita na seguinte forma: 

 

            

   

 
         

 

  
  

  

  
  

  

   
   

   

   
       

    

 
  

 

   
 

Eq. 3.24 

 

Com as condições de contorno adequadas, a equação 3.24 representa um problema 

de autovalor não-linear. A não-linearidade da equação é devido à presença dos 

termos            ,    e    , os quais dependem de Y e  . 

A resolução deste problema não-linear de autovalor é, entretanto, muito complexa, 

sendo necessário achar uma solução alternativa para o problema. Uma forma 

alternativa do problema não-linear de autovalor pode ser obtida multiplicando os dois 

lados da equação 3.24 pelo conjugado de       e realizando uma integração por 

partes (considerando nulas as condições de contorno). A seguir, tem-se essa forma 

alternativa: 

 

    
  

  
 
 

    
   

   
 

 

         

 

   

  

          

   

 
             

    

 
        

 

   

 

Eq. 3.25 

 

As partes real e imaginária da equação 3.25 podem ser mostradas separadamente, 

como é descrito a seguir: 
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Eq. 3.26 

 

 

Em uma abordagem de conservação de energia, as equações 3.25 e 3.26 possuem 

um significado físico. A equação 3.25 pode ser vista como um balanço de energia 

cinética – potencial. A equação 3.26 pode ser vista como um balanço entre a 

potência fornecida pelo fluido ao cilindro flexível e a potência dissipada através do 

fluido e o amortecimento estrutural. 
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4. Método numérico para simulações com VIV 

 

Para o caso de um corpo rígido montado em uma base elástica e submetido a forças 

provocadas pelo escoamento, pode-se aplicar as equações de Navier-Stokes em 

escoamentos incompressíveis com condições de contorno móveis, como é descrito a 

seguir: 

 

                    Eq. 4.1a 

  

  
                           Eq. 4.1b 

                             Eq. 4.1c 

 

Sendo que: 

  : velocidade do fluido 

  : pressão reduzida 

 

O termo      denota a região de interface entre o escoamento e o corpo e se move a 

uma velocidade desconhecida      . 

A equação estrutural mostrada a seguir descreve o movimento do corpo: 

 

  
   

    
  

  
                       Eq. 4.2 

 

onde considera-se que   é um operador linear e   é uma variável que descreve o 

movimento do corpo, podendo ser, por exemplo, o deslocamento vertical. 

Ao invés de resolver diretamente o sistema acoplado composto pelas equações 4.1 

e 4.2, uma maneira alternativa mais eficiente consiste em resolver as equações de 

Navier-Stokes e estruturam explicitamente e então desacoplar suas soluções a cada 

passo de tempo, conforme feito por Li; Sherwin; Bearman (2000). Desta forma, a 

cada passo de tempo, resolve-se as equações de Navier-Stokes de modo a obter as 

forças aerodinâmicas atuantes no corpo. Estas forças funcionam como entrada na 

equação estrutural, a qual fornece a velocidade do corpo no próximo passo de 

tempo. Após isso, as velocidades do corpo são utilizadas na resolução da equação 

do fluido. 
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Para a resolução das equações de Navier-Stokes com condições de contorno 

móveis existem algumas abordagens, sendo que a mais geral é realizada pelo 

método Arbitrário Lagrangiano-Euleriano (ALE). Em tal abordagem a malha 

computacional se deforma continuamente, fazendo com que o algoritmo de solução 

da equação discreta de Navier-Stokes se altere a cada passo de tempo. Portanto, 

através desta abordagem, não é possível usar algoritmos de solução diretos para 

malhas estáticas. 

Uma outra maneira de resolver o problema de escoamento com condição de 

contorno móvel para um corpo rígido montado em uma base elástica seria 

acoplando um sistema de coordenada no corpo e resolver as equações de Navier-

Stokes em uma referência móvel. Um exemplo disso seria aplicando uma 

transformação de coordenadas em um cilindro rígido. 

Neste trabalho, será apresentado este último método, o qual é descrito na seção a 

seguir. 

 

4.1 Desenvolvimento do método numérico 

 

Para o desenvolvimento das expressões que regem o movimento do cilindro não 

será considerado o fenômeno de rotação. Portanto, assume-se que o corpo se 

movimenta em translação com um deslocamento               em um referencial 

absoluto        . Desta maneira, pode-se acoplar um referencial móvel no cilindro 

através das seguintes transformações: 
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Figura 7 - Sistema de referência absoluto e relativo (móvel) 

 

No sistema de equações anterior, as coordenadas   e   correspondem ao sistema 

de referência móvel acoplado ao cilindro enquanto que      e      correspondem às 

coordenadas da origem do referencial móvel no sistema de referência absoluto, 

como pode ser observado na figura 7. 

 

4.1.2 Transformação das Equações de Navier-Stokes 

 

Nesta seção, para fazer as transformações, será utilizada a notação matriz/vetor, 

portanto: 

 

                 Eq. 4.3 a 

                    Eq. 4.3 b 

 

onde, 

                          

   
  
  

               
  
  

    

 

A velocidade do referencial móvel pode ser obtida através da diferenciação da 

equação 4.3 b: 
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                     Eq. 4.4 

 

Portanto, a velocidade do corpo no sistema de referência absoluto é dada por: 

 

                  Eq. 4.5 

 

Sabe-se também que: 

 

 

   
 

 

  

  

   
 

 

  

  

   
 

 

  
          Eq. 4.6 a 

 

   
 

 

  

  

   
 

 

  

  

   
 

 

  
          Eq. 4.6 b 

 

Considerando as relações anteriores, pode-se definir que: 

 

                               Eq. 4.7 

 

Portanto: 

                    Eq. 4.8 a 

                 Eq. 4.8 b 

                         Eq. 4.8 c 

 

O termo não linear presente no referencial móvel pode também ser escrito na 

seguinte forma: 

 

                                                                             

 

Adotando os subscritos ‘a’ e ‘r’ para se referir aos referenciais absoluto e relativo 

(móvel), respectivamente, pode-se chegar às seguintes equações: 

 

 
 

  
 

 
 

 

  

  

  
 

 

  

  

  
  

 

  
 

 
          Eq. 4.9 

 

 
   

  
 

 
            

   

  
 

 
          Eq. 4.10 
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onde 

    
  

  
 

 
                               Eq. 4.11 

 

Substituindo as equações 4.5 e 4.11 na equação 4.10, chega-se ao seguinte 

resultado: 

 

 
   

  
 

 

                         
 

  
         

                         
  

  
 

 
 

    
  

  
 

 
                     

Eq. 4.12 

 

Com isso, pode-se então substituir as equações 4.8, 4.9 e 4.12 nas equações 4.1 de 

Navier-Stokes, resultando nas equações de Navier-Stokes para o referencial móvel: 

 

                  Eq. 4.13 a 

  

  
                                  Eq. 4.13 b 

Sendo             . 

A equação da vorticidade pode ser encontrada através das equações 4.5 e 4.6, 

resultando na seguinte expressão: 

 

   
   

   
 

   

   
 

  

  
 

  

  
            Eq. 4.14 

 

A expressão anterior mostra que a transformação não altera a vorticidade. A 

explicação para isso reside no fato do cilindro não apresentar rotação em torno do 

seu eixo. 

O desenvolvimento das equações de Navier-Stokes apresentado nesta seção 

mostra que, em movimentos não acelerados, o problema envolvendo um corpo que 

se move em um escoamento uniforme é equivalente ao de um corpo estacionário em 

um escoamento que se move. 
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4.1.3 Força e momento atuantes no cilindro 

 

As forças e momentos que atuam no cilindro podem ser decompostas em 

componentes paralelos e perpendiculares à direção da velocidade do fluido no 

escoamento. Estas decomposições serão utilizadas no solucionador numérico, o 

qual é discutido posteriormente neste trabalho. 

A força exercida pelo fluido no cilindro é um resultado da integração da tensão local 

( ) ao longo de toda a superfície do corpo. Tal tensão é composta pela soma vetorial 

da pressão local do fluido ( ) e da tensão de cisalhamento local ( ). Assim, desta 

forma chegam-se às seguintes expressões: 

 

                 Eq. 4.15 

                                      

Eq. 4.16 

 

Nas equações anteriores,    é o vetor unitário normal à superfície do cilindro e que 

aponta para fora deste e     e     são as componentes correspondentes à pressão 

do fluido e à força viscosa, respectivamente. O que se deve notar é que a integral 

anterior está definida no sistema de referência absoluto. Porém, força total   

exercida no cilindro pode ser encontrada também através das componentes da força 

no sistema de referência relativo (   e   ) utilizando a transformação pela matriz  , 

como é mostrado a seguir: 

 

                            Eq. 4.17 

 

O momento (  ) em relação a um ponto   é definido no referencial absoluto por: 

 

                                                      

Eq. 4.18 

Na expressão do momento,    é o vetor raio entre o ponto   e o elemento na 

superfície do cilindro. Se for considerado que    , ou seja, o momento é em 

relação ao centro do cilindro, e que    pertence à superfície deste, então: 
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                           Eq. 4.19 

 

Portanto, em um caso bidimensional, resulta a seguinte expressão: 

 

                           

Eq. 4.20 

 

Desta maneira, pode-se calcular o momento em um sistema de referência relativo 

(móvel). 

 

4.1.4 Equação de movimento do cilindro 

 

Em um corpo rígido que se move em duas dimensões com rotação nula, seu 

movimento pode ser descrito através de dois componentes de deslocamento (   e 

  ), sendo um na direção   e o outro na direção  . Assim, pode-se escrever o vetor 

deslocamento ( ) na seguinte forma: 

 

                     Eq. 4.21 

 

A equação que rege o movimento do cilindro é, portanto: 

 

                       Eq. 4.22 

 

onde  ,   e   são as matrizes de massa, amortecimento e rigidez, respectivamente, 

e    é o vetor que possui os componentes das forças externas que atuam no cilindro. 

Para resolver a equação 4.22, pode ser empregado o método trapezoidal, descrito 

através das equações a seguir: 

 

        
 

 
                     Eq.4.23 a 

        
 

 
                     Eq. 4.23 b 

                                 Eq. 4.23 c 
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onde   ,    e    são aproximações numéricas para  ,    e   , respectivamente no 

instante de tempo       . Neste esquema, pode-se notar que não há a 

necessidade de se avaliar o termo de força    no instante de tempo    . Entretanto, 

para um algoritmo acoplado de interação fluido-estrutura, é necessário que       seja 

independente de      , e portanto, não pode ser avaliado diretamente. Considera-se 

então a seguinte aproximação: 

 

                               Eq. 4.24 

 

onde o parâmetro   é utilizado como um parâmetro de extrapolação. Se      , 

por exemplo, tem-se uma extrapolação de segunda ordem para      . 

 

4.1.5 Algoritmo de acoplamento 

 

Um procedimento computacional para o acoplamento entre fluido e estrutura é 

mostrado a seguir. 

Depois de ter calculado a solução no instante de tempo  , executam-se os seguintes 

passos: 

a) Calcular o vetor força     e utilizar a aproximação por extrapolação (Eq. 4.24) 

para se obter      . 

b) Resolver o sistema das equações estruturais (Eqs. 4.23) para se obter     , 

.      e     . 

c) Resolver as equações de Navier-Stokes (Eqs. 4.13) para os instantes    e 

     usando os resultados de     . 

d) Atualizar       e retornar ao passo a). 

 

4.1.6 Discretização temporal das equações de Navier-Stokes 

 

As equações de Navier-Stokes para escoamento incompressível em um referencial 

móvel pode ser escrita na forma: 
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                         Eq. 4.25 

onde 

         

                   

 

e             , como havia sido definido anteriormente. Os termos   e   

correspondem respectivamente aos vetores pressão e velocidade. 

O esquema de discretização temporal para o método numérico pode ser dividido em 

três passos: 

 

     

  
           

    
             Eq. 4.26 a 

     

  
                  Eq. 4.26 b 

       

  
              

    
             Eq. 4.26 c 

 

No primeiro passo, os termos de força e advecção não linear são obtidos através de 

uma forma convectiva a qual é integrada no tempo utilizando um esquema Adams-

Bashforth multinível indicado pelos coeficientes   . 

No segundo passo, a pressão média no tempo (  ) é obtida pelo divergente de Eq. 

23c, assumindo        , para chegar na equação de Poisson com as condições de 

contorno, como é apresentado na seguinte expressão: 

 

     

  
      

       

  
                                     

    

   

  

Eq. 4.27 

 

Tais condições de contorno asseguram que o erro de divisão associado ao esquema 

é consistente com a discretização temporal geral. 
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4.1.6 Discretização espacial das equações de Navier-Stokes através do Método 

de Elementos Espectrais 

 

O software utilizado nas simulações do presente trabalho emprega o Método de 

Elementos Espectrais na discretização das equações diferenciais parciais 

provenientes da modelagem do problema em questão. Os principais conceitos e 

características de tal método são detalhados nesta seção. 

O tipo de escoamento dos experimentos deste trabalho é governado pelas equações 

de Navier-Stokes visto que se trata de um escoamento viscoso incompressível de 

um fluido newtoniano. 

Tais equações podem ser escritas em sua forma adimensional tendo o diâmetro   

como comprimento de referência e a velocidade de escoamento ao longe    como 

velocidade de referência. A equação então é escrita na seguinte forma: 

 

  

  
             

 

  
    Eq. 4.28 

 

               Eq. 4.29 

 

sendo que            o campo de velocidades,   é o tempo,   é a pressão 

estática e           é o número de Reynolds, onde   é a viscosidade dinâmica 

do fluido em questão. 

Para que as equações diferenciais parciais 4.28 e 4.29 possam ser resolvidas 

numericamente por um algoritmo computacional, elas precisam ser discretizadas 

apropriadamente. No Método de Elementos Espectrais o esquema de discretização 

é baseado em dois métodos previamente conhecidos: o Método dos Elementos 

Finitos (FEM) e o Método Espectral Clássico. 

A principal ideia do Método dos Elementos Finitos é dividir o domínio de interesse 

( ) em subdomínios que não se sobrepõem, conhecidos também como elementos 

( 
 
), e calcular a solução da equação através de uma sequência de aproximações 

encontradas em cada elemento do domínio. Tais aproximações consistem de 

combinações lineares de funções de base, as quais possuem certas características 

que asseguram a continuidade da aproximação da solução global no domínio de 



31 
 

interesse  . A convergência da solução através deste método pode ser obtida 

através do refinamento da malha no domínio  , visto que as funções de base 

empregadas neste método são geralmente de baixa ordem (polinômios lineares ou 

quadráticos). 

O Método Espectral Clássico, por sua vez, não emprega nenhuma discretização 

espacial, entretanto ele se utiliza de funções de alta ordem para aproximar a solução 

das equações diferenciais em todo o domínio. 

O Método de Elementos Espectrais é proveniente da junção das duas principais 

características dos métodos descritos anteriormente, ou seja, o uso de funções de 

alta ordem como funções de base na discretização espacial do Método dos 

Elementos Finitos. Isso permite que a convergência da solução seja obtida de duas 

maneiras: pelo refinamento da malha, conhecido como convergência  , ou 

aumentando a ordem das funções de base, conhecido como convergência  . 

Neste trabalho, foi adotada um discretização espacial utilizando o método dos 

elementos espectrais. O domínio o qual está inserido o cilindro é dividido em 

subdomínios triangulares. Deste modo, a solução é expandida dentro de cada 

subdomínio utilizando uma expansão polinomial arbitrária de ordem p. 

 

4.2 Validação e simulação do escoamento 

 

Tomando os termos da equação de Navier-Stokes em sua forma adimensional, 

chegam-se às seguintes equações: 

 

                   Eq. 4.28 a 

   

                                            Eq. 4.28 b 

 

Os termos adimensionalizados nas equações anteriores são os seguintes: 
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onde  ,  , e   são o diâmetro do cilindro, a velocidade ao longe do escoamento e a 

densidade do fluido, respectivamente. Da mesma maneira, foram 

adimensionalizados os termos de força: 

 

  
  

  

    
               

  
  

    
   

 

Em relação aos termos adimensionais, é interessante observar que       
  e 

      
 . Além disso, não foi considerando o termo que diz respeito ao momento, 

pois este é nulo, devido ao fato de o cilindro não sofrer rotação. 

Outros termos adimensionais importantes são o parâmetro de massa (  ), a 

velocidade reduzida (  ) e a amplitude adimensional (  ): 

 

   
 

   
                

 

   
                

 

 
 

 

4.2.1 Oscilação vertical forçada 

 

O movimento senoidal forçado de um corpo rígido pode ser descrito através da 

seguinte equação de movimento: 

 

                         Eq. 4.29 

 

Em tal situação, a frequência de emissão de vórtices pode ser controlada em uma 

certa faixa de valores de velocidade reduzida. Este fenômeno, conhecido como lock-

in, acontece quando a frequência de emissão de vórtices e a frequência de oscilação 

do corpo se sincronizam. Tanto em procedimentos experimentais quanto em 

simulações numéricas, foi mostrado que este fenômeno de sincronização ocorre 

somente acima de um determinado valor de amplitude de oscilação. 
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4.2.2 Oscilação vertical livre 

 

A equação que descreve o movimento de oscilação vertical livre pode ser escrita em 

sua forma adimensional da seguinte maneira: 

 

       
  

  
      

  

  
 

 

   
  

 

           Eq. 4.30 

 

onde   corresponde a um fator de amortecimento na direção  . 

 

4.2.3 Oscilação longitudinal livre 

 

A equação que descreve o movimento de oscilação longitudinal livre pode ser escrita 

em sua forma adimensional da seguinte maneira: 

 

       
  

  
      

  

  
 

 

   
  

 

            Eq. 4.31 

 

onde   corresponde a um fator de amortecimento na direção  . 
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5. Simulações numéricas para os casos de 1 e 2 graus de liberdade 

5.1 Teste de convergência 

 

Para que as simulações pudessem fornecer resultados coerentes, primeiramente, foi 

realizado um teste de convergência. Neste teste, foram utilizadas várias 

configurações de malhas de modo a obter uma malha definitiva que simulasse de 

maneira próxima ao caso real a um custo computacional relativamente baixo. Para 

isso, foram utilizados alguns parâmetros de convergência, os quais são descritos a 

seguir: 

 

P: ordem do grau do polinômio do algoritmo computacional; 

W: distância vertical entre as extremidades inferior e superior da malha; 

La: distância horizontal entre a extremidade esquerda (montante) da malha e o 

centro do cilindro; 

Lb: distância horizontal entre o centro do cilindro e a extremidade direita (jusante) da 

malha. 

 

O critério de convergência foi baseado na convergência dos valores do coeficiente 

de arrasto (  ) e do número de Strouhal (  ) para cada parâmetro. 

O teste de convergência foi realizado da seguinte maneira: 

1) Determina-se uma malha inicial com valores arbitrários de parâmetros 

geométricos; 

2) São feitas, então, algumas simulações alternando o parâmetro polinomial (P); 

3) Feito isso, determina-se o grau de polinômio o qual o    e o    convergem 

com um erro menor que 1,5%; 

4) Obtido o grau do polinômio, fazem-se então algumas simulações alternando o 

parâmetro W e deixando os outros parâmetro constantes; 

5) Feito isso, determina-se o valor de W o qual o    e o    convergem com um 

erro menor que 1,0%; 

6) Obtido o valor definitivo de W, fazem-se então algumas simulações 

alternando o parâmetro La e deixando os outros parâmetro constantes; 
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7) Feito isso, determina-se o valor de La o qual o    e o    convergem com um 

erro menor que 1,0%; 

8) Obtido o valor definitivo de La, fazem-se então algumas simulações 

alternando o parâmetro Lb e deixando os outros parâmetro constantes; 

9) Feito isso, determina-se o valor de Lb o qual o    e o    convergem com um 

erro menor que 1,0%; 

10)  A malha definitiva é obtida. 

 

No teste de convergência realizado, chegou-se aos seguintes valores definitivos (em 

unidades adimensionais): 

 

P W La Lb 

8 25 20 20 
 

 

A malha definitiva utilizada nas simulações é ilustrada a seguir nas figuras 8 e 9. 

 

 

 

Figura 8 - Malha definitiva 
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Figura 9 - Malha definitiva (cilindro) 

 

5.2 Simulações 

 

Depois de ter obtido a malha definitiva, foram executadas as simulações numéricas 

para o caso em questão. 

A primeira bateria de simulações consistiu no movimento com um grau de liberdade 

do cilindro na direção transversal ao escoamento (direção  ), sendo, portanto, 

restringido o seu movimento na direção longitudinal (direção  ). Na segunda bateria, 

foi considerado tanto o movimento longitudinal quanto o transversal, sendo, portanto, 

um movimento com dois graus de liberdade. O movimento de rotação do cilindro foi 

restringido em todas as simulações. 

Os parâmetros utilizados em todos os casos foram os seguintes: 
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  : velocidade do fluido ao longe 

 : viscosidade cinemática do fluido 

 : diâmetro 

 

Portanto, com estes parâmetros, obteve-se       . 

 

 

5.3 Resultados 

5.3.1 Movimento com um grau de liberdade (1 DOF) 

 

Os resultados obtidos nas simulações para o caso de um grau de liberdade (1 DOF) 

(gráficos 1 ao 3) mostram as respostas típicas de vibrações induzidas por vórtices 

para baixos números de Reynolds. Pode-se perceber que existe uma faixa de 

valores a qual acontece o fenômeno de sincronização (lock-in), onde a frequência de 

emissão de vórtices se aproxima a um valor próximo à frequência natural da 

estrutura. O fenômeno de lock-in pode ser dividido em duas partes: a parte inicial e a 

parte final (decrescente). A parte inicial abrange a faixa de velocidade reduzida (  ) 

entre aproximadamente 3,0 e 4,5. É inclusive nessa faixa que a amplitude atinge o 

valor máximo, que é de aproximadamente         . O ângulo de fase nessa 

região está próximo de 0º. Os pontos contidos na faixa            mostram a 

transição entre a parte inicial e a parte decrescente, correspondendo a uma rápida 

mudança do ângulo de fase de um valor próximo a 0º a um valor perto de 180º. A 

parte decrescente do fenômeno de sincronização continua até uma velocidade 

reduzida de aproximadamente 7,5 e, para        as amplitudes de vibração se 

mantém baixas (        ) e com um ângulo de fase muito próximo de 180º. 
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Gráfico 1 – Amplitude Vs Velocidade Reduzida (1 DOF) 

 

 

 

Gráfico 2 – Coeficiente de arrasto Vs Velocidade Reduzida (1DOF) 
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Gráfico 3 - Frequência Vs Velocidade Reduzida (1DOF) 

 

 

 

5.3.2 Movimento com dois graus de liberdade (2 DOF) 

 

Os gráficos obtidos no movimento com dois graus de liberdade (2 DOF) (gráficos 4 

ao 7) seguem a mesma tendência do de 1 DOF, com a diferença devido ao 

aparecimento da amplitude no movimento longitudinal (    ). Entretanto, sua 

amplitude é muito menor que a correspondente ao movimento transversal (    ), 

sendo que o seu máximo valor atinge            , enquanto o máximo valor de 

     é de          . As faixas de velocidade reduzida relativas aos trechos inicial 

e final (decrescente) do fenômeno de sincronização são praticamente as mesmas 

obtidas no movimento com 1 DOF. 
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Gráfico 4 – Amplitude Longitudinal Vs Velocidade Reduzida (2DOF) 

 

 

 

Gráfico 5 - Amplitude Transversal Vs Velocidade Reduzida (2DOF) 
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Gráfico 6 – Coeficiente de Arrasto Vs Velocidade Reduzida (2DOF) 

 

 

Gráfico 7 – Frequência Vs Velocidade Reduzida (2DOF) 

 

 

 

 

 

A seguir são ilustradas figuras representando os campos de pressões e de 

velocidade longitudinal ( ) em alguns casos de 1 DOF. 
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Figura 10 – Campo de velocidades (u) com Vr = 2,0 – 1DOF 
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Figura 11 - Campo de velocidades (u) com Vr = 5,0 – 1DOF 
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Figura 12 - Campo de pressões com Vr = 2,0 – 1DOF 

 

 

Figura 13 - Campo de pressões com Vr = 5,0 – 1DOF 
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6. Simulações numéricas 3D 

6.1 Teste de convergência 

 

Para que as simulações pudessem fornecer resultados coerentes, foi realizado um 

teste de convergência para simulações tridimensionais assim como nos casos com 1 

e 2 DOF. Diferentemente do que fora feito anteriormente, os parâmetros envolvidos 

para a execução do teste foram outros, uma vez que a malha definitiva já fora obtida 

e, portanto, não sendo necessário alterar os parâmetros de malha. Portanto, utilizou-

se do número de modos na direção do eixo (Z) como parâmetro de teste. 

O objetivo deste teste de convergência é obter o valor mínimo de Z no qual os 

resultados convirjam. A escolha de um valor mínimo de Z tem o como intuito a 

realização futura de simulações tridimensionais com uma boa precisão e ao mesmo 

tempo um mínimo custo computacional. 

Para este teste de convergência, foi escolhido um número de Reynolds igual a 300. 

Visto que a turbulência aumenta quanto maior for o valor de Re, procurou-se utilizar 

o valor escolhido para o caso crítico de uma situação. 

A malha empregada para este teste é a mesma obtida no teste para 1 e 2 DOF 

(Figuras 8 e 9), a qual apresenta um refinamento na região de esteira próxima. 

Assim como nos casos com 1 e 2 DOF, o critério de convergência foi baseado na 

convergência dos valores do coeficiente de arrasto (  ) e do número de Strouhal (  ) 

para cada parâmetro. Com o objetivo de se obter valores mais consistentes tanto de 

   quanto de   , as simulações foram realizadas com 250 passos de tempo 

adimensionais com comprimento periódico L = 5D. Para minimizar os custos 

computacionais, a resolução de    escolhida para este teste é 0,005. 

Os valores de Z obtidos no teste são apresentados na tabela a seguir. 

 

Número de modos (Z)         

16 divergiu divergiu 

32 1,287 0,205 

48 1,282 0,205 

64 1,291 0,210 

Observa-se nos valores tabelados que tanto o coeficiente de arrasto quanto o 

número de Strouhal variam muito pouco com os valores de Z que não divergem (32, 
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48 e 64), sendo uma diferença de menos de 1% para    e aproximadamente 2,5% 

para   . 

Portanto, foi o escolhido o menor valor do número de modos entre eles, Z = 32, para 

a execução das simulações dos escoamentos tridimensionais. 

 

6.2 Simulações 

 

Depois de ter obtido o valor do número de modos para o caso tridimensional junto 

com a malha definitiva, as simulações numéricas foram executadas para o caso em 

questão. 

Esta bateria de simulações consistiu no movimento com dois graus de liberdade do 

cilindro rígido em suas direções transversal (direção  ) e longitudinal (direção  ) ao 

escoamento, sendo semelhante ao caso descrito no item 5.2. Entretanto, para este 

caso, considerou-se também uma profundidade de    na direção  , dando portanto 

um caráter tridimensional para este experimento. 

Em cada teste simulado foi adotado um valor específico de velocidade reduzida    

variando-o de 2 a 10, de modo a se verificar a resposta do movimento em cada 

caso. 

Os parâmetros que foram utilizados nestas simulações são os seguintes: 
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6.3 Resultados 

 

Os resultados obtidos nas simulações tridimensionais não diferem muito dos que 

ocorrem no caso com 2 DOF sem a profundidade na direção  , com a região de lock-

in ocorrendo na faixa de valores de velocidade reduzida entre aproximadamente 3,5 

e 7,0. 

O que se pode notar de diferente são os valores máximos das amplitudes e do    

que são menores devido à estrutura tridimensional considerada. Neste caso,      

máximo está em torno de 0,51 ao passo que o    máximo é aproximadamente 2,1. 

Em ambos os casos o    é próximo de 4,5. Tais resultados são apresentados nos 

gráficos 8, 9 e 10 a seguir.  

 

 

Gráfico 8 – Amplitude Transversal Vs Velocidade Reduzida (3d) 
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Gráfico 9 – Coeficiente de Arrasto Vs Velocidade Reduzida (3d) 

 

Gráfico 10 – Frequência Vs Velocidade Reduzida (3d) 

 

 

A seguir são ilustradas figuras representando os campos de vorticidade em alguns 

casos simulados. 
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Figura 14 - Campo de vorticidade (eixo z) com Vr = 4,5 – 3d – Vista frontal 

 

 

Figura 15 - Campo de vorticidade (eixo z) com Vr = 4,5 – 3d – Vista superior 

 

 

Figura 16 - Campo de vorticidade (eixo z) com Vr = 2,0 – 3d – Vista frontal 
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Figura 17 - Campo de vorticidade (eixo z) com Vr = 2,0 – 3d – Vista superior 

 

 

Figura 18 - Campo de vorticidade (eixo z) com Vr = 8,0 – 3d – Vista frontal 

 

 

Figura 19 - Campo de vorticidade (eixo z) com Vr = 8,0 – 3d – Vista superior 

 

Nas figuras anteriores (Figs. 14 a 19) pode-se visualizar claramente a formação da 

esteira de vórtices e, especificamente, na Fig. 14 ocorre a sua maior intensidade, 

devido à frequência de emissão estar muito próxima da frequência natural da 

estrutura (      ). Além disso, as Figs. 15, 17 e 19 ilustram claramente o caráter 

tridimensional destas simulações através de sua vista superior. 
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A seguir são apresentados três gráficos referentes ao deslocamento e força de 

sustentação para a velocidade reduzida de lock-in (      ). 

 

Gráfico 11 – Deslocamento (y) e Força de sustentação (Fy) Vs Tempo – Vr = 4,5 – 3d 

 

 

 

Gráfico 12 – Deslocamento (y) e Força de sustentação (Fy) Vs Tempo – Vr = 4,5 – 3d (zoom) 
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Gráfico 13 – Deslocamento (y) Vs Deslocamento (x) – Vr = 4,5 – 3d 

 

 

Os gráficos 11 e 12 mostram a relação entre o deslocamento transversal do cilindro 

e a força de sustentação presente em relação ao tempo. Nota-se no gráfico 12 que o 

deslocamento e a força de sustentação estão em fase quando a emissão de vórtices 

atinge um regime estável. 

No gráfico 13 tem-se uma curva característica desse tipo de movimento, a qual é 

resultado de um movimento harmônico (Curva de Lissajous). 
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7. Conclusões 

 

Tendo como base os resultados obtidos nas simulações, pode-se concluir que o 

Método de Elementos Espectrais aliado ao desenvolvimento da abordagem feita 

para corpos rígidos constituem uma boa alternativa para analisar casos de 

escoamento ao redor de cilindros com números de Reynolds relativamente baixos, 

pois os resultados fornecidos pelas simulações se mostraram coerentes com o 

desenvolvimento teórico e com o esperado experimentalmente. Além disso, o 

fenômeno de sincronização (lock-in), o qual possui fundamental importância nesse 

tipo de análise, é identificado claramente nos gráficos das simulações numéricas. 

Outro fato importante a ser comentado é que a diferença entre as simulações 

tridimensionais e as de dois graus de liberdade (sem considerar a profundidade na 

direção  ) do cilindro rígido para baixos números de Reynolds é relativamente 

pequena no que se refere à forma dos gráficos obtidos, sendo que praticamente 

somente os valores máximos são diferentes. Com isso, pode-se concluir que o caso 

com 2 DOF pode ser tomado como uma boa aproximação qualitativa do caso 

tridimensional para se evitar custos computacionais elevados gerados pelos 

parâmetros adicionais 3d. 

Entretanto, algo que foi observado durante o desenvolvimento deste trabalho foi que 

as simulações se tornam significantemente custosas à medida que se aumenta o 

valor da velocidade reduzida. Portanto, este fato também deve ser levado em 

consideração ao se fazer outros tipos de análise os quais envolvem escoamentos 

com números de Reynolds mais altos. 
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