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RESUMO

Este trabalho tem como objetivo realizar simulagbes numéricas através do
Método de Elementos Espectrais para o caso de um cilindro rigido sujeito a um
escoamento incompressivel com um numero de Reynolds relativamente baixo. Para
que fosse possivel fazer simulagbes proximas de um caso real, primeiramente foi
realizado um teste de convergéncia de modo a obter uma malha que produzisse um
resultado proximo do real a um custo computacional baixo. Em tal teste foi utilizado
um cilindro rigido fixo. ApGs as simulacdes de convergéncia, foram realizadas as
simulagdes para os casos de movimento com um e dois graus de liberdade de um
cilindro rigido. Posteriormente, foram feitas simula¢cdes para um cilindro rigido em
escoamentos com dois graus de liberdade considerando uma profundidade na
direcdo deste. Os principais resultados obtidos foram as respostas da amplitude do
movimento (nas dire¢cbes x e y) e do arrasto exercido no cilindro em funcédo da

velocidade do escoamento.



ABSTRACT

This work has the purpose of performing numerical simulations through Spectral
Element Method for the case of a stiff cylinder subject to an incompressible flow of
low Reynolds number. In order to perform numerical simulations that are close to a
real situation, a convergence test was conducted at a first moment to obtain a mesh
that would be able to provide results close to reality at a low computational cost. A
fixed stiff cylinder was used in such test. After that, 1 and 2 DOF movement of a stiff
cylinder were performed. Simulations for a stiff cylinder in a 2 DOF movement with a
depth in cylinder's axis direction were performed afterwards. The main obtained
results were the amplitude of movement (in x and y directions) and the drag

coefficient of the cylinder as function of velocity of the flow.
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1. Introducéo

O principal objetivo deste trabalho € obter resultados de simulacdes do
escoamento ao redor de um cilindro rigido e avaliar a sua resposta em relacdo aos
seguintes parametros: coeficiente de arrasto, frequéncia de emissédo de vortices e
amplitude (transversal e longitudinal). Este relatério apresentara as abordagens para
simulacées em movimentos com um e dois graus de liberdade e um movimento de
carater tridimensional no qual se considera uma profundidade na direcdo z em um

movimento com dois graus de liberdade.



2. Motivacao

O problema relacionado a vibra¢des induzidas por vértices tem se tornado um tema
de grande relevancia nos dias de hoje devido a crescente pesquisa na area de
extracao de petréleo em aguas profundas. Para esta aplicacéo, sdo utilizadas longas
estruturas cilindricas com a func@o de extrair petréleo do leito maritimo. Tais
estruturas sdo conhecidas como risers e seu projeto, construcdo, instalagédo e
manutencdo sdo muito caros. Por isso, o estudo completo dos efeitos que as
vibracfes induzidas pelo escoamento causam nos risers é de grande importancia,

tendo em vista todos os fatores econdmicos envolvidos.



3. Fundamentos teoéricos

3.1 Escoamento ao redor de um cilindro

Esta secdo tem como objetivo explicar as caracteristicas que sao observadas em um
escoamento ao redor de um cilindro. Serdo, portanto, identificadas todas as
diferentes regides presentes nesse escoamento assim como seréo descritos 0s seus

respectivos comportamentos no escoamento.

3.1.1 Regibes de escoamento perturbado

As regifes de escoamento perturbado correspondem as regifes ao redor do corpo
cilindrico que sao afetadas de alguma forma pela presenca deste. Existem

basicamente 4 tipos de regides, conforme ilustra a figura 1:

camadas cisalhantes

escoamento
retardado

escoamento .
3 acelerado 7

Figura 1 - Regides de escoamento perturbado. Extraido de ASSI (2005).

(1) uma regiao estreita de escoamento retardado;
(2) duas camadas limite simétricas em relagdo ao eixo transversal do cilindro

que esta alinhado a diregdo do escoamento;



(3) duas regides laterais de fluido deslocado e acelerado;

(4) uma regido de esteira, a jusante no escoamento.

A regido de escoamento retardado é uma consequéncia do ponto de estagnacao
localizado logo na frente do corpo cilindrico.

As camadas limite presentes na regido (2) estdo submetidas a um gradiente de
pressdo favoravel em sua parte frontal e a medida que se percorre essas camadas,
o gradiente de pressao se torna adverso. Este ultimo fenbmeno faz com que a
aderéncia dessas camadas ao cilindro seja prejudicada e provoque sua separagao
do corpo cilindrico, formando camadas cisalhantes livres. As camadas cisalhantes
delimitam a regido de esteira préxima.

As regibes laterais (3) compreendem a parte de escoamento que € deslocada e
acelerada pela presenca do corpo. Como a esteira possui baixa pressao, ocorre o
movimento do fluido da regiédo (3) em direcao a ela.

A regido (4) corresponde a esteira e nela o escoamento esta totalmente separado e
com velocidade média menor que a incidente. Na regido de esteira proxima
(localizada proxima ao cilindro), ocorre a formacédo de bolhas de recirculacdo, que
sdo convectadas ao longo da esteira. Além disso, € nesse local que ocorre 0s

principais fendmenos que déo origem as vibrac¢des induzidas pelo escoamento.

3.2 Fendmeno de separacédo e desprendimento de vortices

O numero de Reynolds tem importancia fundamental em escoamentos externos em
fluidos viscosos. Este nimero relaciona a magnitude das forcas inerciais e viscosas

presentes no escoamento, sendo definido pela seguinte relacao:

pUxD

Re = Eq. 3.1

onde

p: densidade do fluido
U.: velocidade do escoamento incidente ao longe

D: didmetro do cilindro



u: viscosidade dinamica do fluido

No caso do escoamento ao redor de um cilindro, observam-se sucessivas transicdes
a medida que o numero de Reynolds aumenta.

Quando Re é aproximadamente 200, ocorre uma transicao para o regime turbulento
na esteira, porém ainda sem afetar a camada limite e a regido de esteira proxima. A
turbuléncia de desenvolve aos poucos na regido préxima ao cilindro, entretanto a
camada limite e as camadas cisalhantes permanecem laminares.

A transicdo para regime turbulento alcanca a camada limite no ponto de separacéo
quando o nimero de Reynolds do escoamento atinge Re = 10°, provocando uma
diminuicdo repentina no arrasto. Se Re for aumentado ainda mais, a transi¢céo para o
regime turbulento acaba se movendo para o ponto de estagnagéao frontal do cilindro,
criando assim uma camada limite turbulenta completa na regido de separacdo. A
ocorréncia de turbuléncia na camada limite eleva o valor das componentes cinéticas
do escoamento, permitindo que a camada limite resista mais ao gradiente
desfavoravel de pressédo. Isso faz com que a separacdo seja deslocada para uma
regido mais a jusante na parede do cilindro e, como consequéncia disso, a regiao
gue é exposta ao escoamento descolado (baixas pressfes) sera menor, provocando
0 estreitamento da esteira e a diminuicdo no arrasto.

O estado do escoamento pode ser completamente laminar, transicdo na esteira,
transicdo nas camadas cisalhantes, transicdo nas camadas limite ou completamente

turbulento.

3.2.1 Escoamento completamente laminar

No regime completamente laminar, pode ocorrer um escoamento altamente viscoso,
gue acontece quando o numero de Reynolds € muito baixo, pois as for¢as inerciais
nao tem magnitude suficiente para vencer as forcas viscosas. Nesse tipo de
escoamento (conhecido como creeping flow), as camadas limite ndo se separam da
superficie da parede cilindrica em nenhum ponto. Entretanto, a medida que se eleva
o0 numero de Reynolds, verifica-se a ocorréncia da separacdo do escoamento,
quando bolhas de recirculacdo sé&o formadas na regido de esteira proxima. As

camadas cisalhantes livres se encontram na extremidade jusante destas bolhas, no
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local conhecido como ponto de confluéncia. Estas bolhas permanecem estaveis
enquanto o escoamento esta submetido a velocidades baixas.

A esteira comeca a se tornar instavel quando Re atinge a faixa entre 30 e 48,
causando o alongamento das bolhas de recirculacdo. A partir de Re = 65, 0
comportamento instavel é mais visivel e percebe-se que as bolhas sdo convectadas
para a esteira ao longe conforme uma oscilagdo harménica. Ao final desse estado,
pode-se observar a emissdo alternada de uma carreira de voértices laminares,
conforme ilustra a figura 2. Esta esteira de vortices é conhecida como esteira de
vortices de von Karman e possui um papel fundamental quando se estuda o

fendmeno de vibrac¢des induzidas pelo escoamento em cilindros.

Figura 2 - Inicio da instabilidade da esteira em regime laminar. Adaptado de Batchelor (1967). Extraido de
ASSI (2005).

3.2.2 Transi¢ao na esteira

A medida que Reynolds se aproxima de 180, a esteira comeca a apresentar sinais
de turbuléncia e deixa de ser bidimensional. Os fenbmenos de transicdo serao
detalhados ao longo do desenvolvimento deste trabalho. Na figura 3, sdo ilustradas

imagens de esteiras transicionais.



- Ot e

(a)

(b)

Figura 3 - Transi¢ao na esteira. (a) Re =190 (b) Re = 340. Extraido e adaptado de Zdravkovich (1997).

3.2.3 Transicdo nas camadas cisalhantes

Esta segunda transicdo ocorre ao longo das camadas cisalhantes livres e neste
momento as camadas limite ainda estdo no regime laminar. Esta transicdo pode ser

dividida em trés fases:

(i) desenvolvimento de ondas de transi¢&o (350 - 400 < Re < 1x10°%- 2x10°)
(i)  formacdo de turbilhdes de transicdo (1x10°- 2x10° < Re < 2x10*- 4x10%
(i)  mudanca rapida para a turbuléncia (2x10*- 4x10* < Re < 1x10°- 2x10°)

3.2.4 Transicdo nas camadas limite

E nessa transic&o que ocorre a repentina reducéo no arrasto, conhecida como crise

do arrasto. A transicdo na camada limite pode ser dividida em 5 etapas:

()  regime pré-critico (1x10° - 2x10° < Re < 3x10° — 3,4x10°)
(i)  regime de uma bolha (3x10°- 3,4x10° < Re < 3,8x10° - 4x10°)
(i)  regime de duas bolhas (3,8x10° - 4x10°< Re < 5x10° - 1x10°)
(iv)  regime supercritico (5x10° - 1x10°< Re < 3,5x10° - 6x10°)

(v) regime pés-critico (3,5x10° - 6x10°< Re < n&o conhecido)



3.2.5 Escoamento completamente turbulento

O estado de escoamento completamente turbulento s € alcancado quando todas as
regides de escoamento perturbado se tornam turbulentas. N&o se tem conhecimento
sobre o a faixa de valor de Re de inicio deste tipo de regime e seu valor final te6rico
€ quando Re tende ao infinito. Tal situacdo corresponde ao Ultimo estado de

escoamento.

3.3 Vibragdes Induzidas pelo Escoamento

As vibracdes induzidas pelo escoamento (VIE) ocorrem na maioria dos casos em
que estruturas de perfil rombudo estdo submetidas a escoamentos fluidos. Em
algumas situagfes, tais vibragdes podem causar danos ou até destruir a estrutura,
sendo que em outras, elas produzem movimentos oscilatorios Gteis. Os diversos
tipos de VIE séo classificados de acordo com sua natureza. Neste trabalho seréo

discutidas apenas as vibracdes induzidas por vortices (VIV).

3.3.1 Vibragdes Induzidas por Vortices

Quando um cilindro é flexivel ou estd montado elasticamente, sua frequéncia natural
pode ser excitada pelo desprendimento de vértices. Assim, movimentos de alta
amplitude podem ocorrer a medida que a frequéncia da geracdo de vortices se
aproxima da frequéncia natural do cilindro. Estes movimentos sdo as vibracdes
induzidas por vortices (VIV) e sdo causadas pela interacdo da estrutura cilindrica
com 0s vortices gerados na esteira. O desprendimento de vortices em um cilindro
oscilante é semelhante ao fendbmeno em um cilindro estacionario, onde os vortices
de desprendem na frequéncia de Strouhal ou préximo a ela.

O termo VIV geralmente se refere a vibragbes que sdo estaveis e auto-limitantes,
resultando de desprendimento de vértices em grande escala. A natureza auto-
limitante das vibrag6es induzidas por vortices é provocada por um equilibrio entre as

forcas de excitacdo e o amortecimento viscoso.



As oscilagdes estruturais causadas por VIV normalmente possuem uma amplitude
moderada. Deste modo, estas oscilagbes ndo sdo elevadas o suficiente para
provocar uma fratura catastrofica inicialmente, porém, apos um certo namero de
ciclos, o material pode falhar por fadiga. Portanto, a principal questdo envolvendo
estruturas que estdo submetidas a VIV é a fadiga.

O fenbmeno de vibragbes induzida por vortices estd tipicamente associado a
estruturas longas e relativamente finas as quais possuem um elevado numero de
frequéncias naturais. Tais estruturas podem ser encontradas, por exemplo, na
conexdo entre as plataformas de petréleo e o leito oceénico, sendo que estas
conexdes estdo no formato cilindrico. Por¢cBes destas estruturas cilindricas longas
ficam suspensas e, portanto, suscetiveis a vibracfes causadas por correntes

maritimas.

3.3.2 Vibragdes com um grau de liberdade

No caso de VIV com um grau de liberdade, um cilindro circular elasticamente

montado esté situado em uma corrente livre de fluido, como € mostrado na figura 4.

Figura 4 - Extraido de DAHL (2008)
O cilindro possui massa m e a montagem elastica possui rigidez k e amortecimento
b. A forga fluida incidente no cilindro na dire¢céo transversal € denominada L. Esta
representacado corresponde a um sistema massa-mola-amortecedor e sua equacgao

de movimento & dada por:

my + by + ky = L(t) Eq. 3.2



A frequéncia natural (w,,) da estrutura no vacuo é fornecida pela seguinte equacao:
Wy = \/é Eq. 3.3

Uma boa aproximacéo para a for¢a L(t) e a resposta y(t) do cilindro é fornecida pelas
equacdes 3.4 e 3.5, onde Lo é a magnitude da forca fluida, yo € a amplitude de
oscilagdo do corpo, w é a frequéncia angular de oscilacdo do corpo e ¢ é o angulo
de fase entre a forca de excitacdo fluida e o deslocamento do cilindro. Segundo
Blevins (1990), os fenémenos de VIV podem ser modelados como oscilagdes

harmdnicas, sem prejuizos as caracteristicas deste fenémeno.

L(t) = Lysin (wt + ¢) Eq. 3.4
y(t) = yosin (wt) Eq. 3.5

Nos casos em que o cilindro oscila em uma corrente livre, este sofre uma aceleragéo
através do fluido, provocando também a aceleracao da porcéo de fluido que esta ao
redor de seu corpo. Esta aceleracéo do fluido envolto no corpo resulta em uma forca
que estd em fase com a forca inercial presente do membro esquerdo da equacgao
3.2. Tal forca resultante é conhecida como forga ideal da massa adicionada. O
desprendimento de vértices na regido de esteira do cilindro pode também causar
forcas do fluido em fase com a forca de inércia da estrutura, resultando em uma
outra parcela de for¢ca do fluido que aparece como forca inercial. Entretanto, tais
forcas ndo podem ser distinguidas individualmente através da medicdo de forcas
hidrodindmicas. Por isso, a soma de todas as forcas de fluido do membro direito que
estdo em fase com as de inércia do membro esquerdo da equacdo 3.2 €

denominada forca efetiva da massa adicionada.
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3.3.3 Parametros adimensionais relevantes

A seguir, sdo apresentados importantes parametros adimensionais relacionados a

vibrac@es induzidas por vortices para sistemas de um grau de liberdade.
a) Amplitude reduzida (A*)

E a relagéo entre a amplitude de oscilagdo do cilindro e seu diametro. A amplitude
de oscilagdo é denotada por A ou y,.

A*

ST
(Wl IS

b) Velocidade reduzida (1}.)
E dada pela relacdo entre a velocidade do escoamento incidente (Uy), a frequéncia

natural de oscilacdo do sistema no vacuo (fy,) € o didmetro do cilindro (D).

V= Voo
’ fNOD

c) Parametro de massa (m”*)
E dado pela relacéo entre a massa (m) de todo o sistema que oscila e a massa do
volume de fluido deslocado pelo cilindro (my). Na relagdo a seguir L, € 0

comprimento submerso do cilindro.

d) Frequéncia reduzida (fy)
E a razdo entre a frequéncia de oscilagio do cilindro (f) e a frequéncia natural do

sistema no vacuo (fyo)-

_
fo =%,
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e) Parametro de amortecimento ({)

Representa a relacdo entre o amortecimento estrutural (c) e 0 amortecimento critico

(cer = ZW)

f) Coeficiente de massa adicional (C,,)
E dado pela relacéo entre a massa adicionada efetiva (m,) e a massa do volume de

fluido deslocado pelo cilindro.

g) Coeficiente de arrasto (Cp)
Este parametro é fornecido pela relagdo entre a forca de arrasto (), a pressao de

estagnacédo e a area projetada do cilindro.

Fx

%pUEODLW

h) Coeficiente de sustentacao (Cy)

Este parametro € fornecido pela relacéo entre a forca de sustentacao (F,), a pressao

de estagnacéo e a area projetada do cilindro.

F
C, = 1—3’
QpUEODLW

3.3.4 Fenbmeno de sincronizacao (Lock-in)

O fendmeno de sincronizagcéo (lock-in, no inglés) é classicamente definido como o

regime no qual a frequéncia de emisséo de vortices (f;) é capturada pela frequéncia
12



f, sendo que a sincronizagdo acontece no momento em que f;/f =1. Uma
observacéo importante que deve ser citada € que f; representa a frequéncia de
emissao de vortices para um cilindro oscilando.

Em cilindros montados elasticamente, existe a possibilidade de a esteira sincronizar
com o movimento do cilindro. A instabilidade natural do escoamento ocorre na
frequéncia de Strouhal. Uma vez que a estrutura se move, a frequéncia de emissao
de vortices pode ser capturada pela frequéncia de oscilacdo da estrutura, dentro de
uma banda de frequéncia em torno da frequéncia de Strouhal. A banda de
frequéncia cresce a medida que a amplitude do movimento aumenta. O fato de a
esteira seguir a oscilacdo de frequéncia da estrutura resulta em alteracbes
substanciais nas forcas de massa adicional, podendo conduzir a frequéncia natural
efetiva do sistema a valores diferentes da frequéncia natural nominal. Apds isso, um
equilibrio dindmico é atingido.

Quando a estrutura esta sob o fenbmeno de sincronizacdo, a frequéncia de
excitacdo da estrutura (w,,) € igual a sua frequéncia natural ajustada por um fator
relacionado aos efeitos de massa adicional do fluido, como é mostrado na equacéo
3.6.

Eq. 3.6

Ao dividir w,, pela frequéncia natural e adimensionalisando a massa, tem-se a

seguinte equacao:

Eq. 3.7

A equacédo 3.7 mostra que a condicao de lock-in é bastante afetada pelo parametro
de massa e pelo coeficiente de massa adicional. Em sistemas expostos ao ar, m* €
elevado enquanto C,, é relativamente pequeno. Nesses casos, a frequéncia de
excitacdo possui quase o mesmo valor da frequéncia natural da estrutura.
Entretanto, em estudos recentes sobre os efeitos do parametro de massa, Khalak;

Williamson (1999) mostraram que, para parametros de massa baixos, a frequéncia
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de excitacdo se afasta da frequéncia natural da estrutura. A diferenca relativa entre o
parametro de massa e o coeficiente de massa adicionada se revela importante em
sistemas com parametro de massa baixo, pois, nesta situacdo, a massa adicionada

provocaria uma alteracao significativa na frequéncia de excitacdo da estrutura

3.3.5 Forcgas atuantes no cilindro

Estudos experimentais de um cilindro oscilando em um grau de liberdade mostram
que a forca L, variavel no tempo, pode ser representada por uma funcao senoidal
assim como o movimento y(t) do cilindro. Sendo assim, a solucéo particular da eq.
3.2 deve ser uma funcdo senoidal, fornecendo expressfées para o movimento do
cilindro (y) e para a forca de sustentacéo (L). Logo, tem-se:

y(t) = yosin(wt) Eqg. 3.8

L(t) = Lysin (wt + @) Eq. 3.9

¥o: Amplitude do movimento na diregéo y
Lo: Amplitude da forca de sustentacéo
@: angulo de diferenca de fase entre o movimento na direcdo y e a forgca de

sustentacao

A eq. 3.9 pode ser expandida em termos de senos e cossenos, resultando na

seguinte expressao:

L(t) = Ly sin(¢) cos(wt) + Ly cos(@) sin(wt) Eq. 3.10

Na forma adimensional, a amplitude da for¢ca de sustentagdo € dada em termos do
coeficiente de sustentacao, C,. O coeficiente de sustentacdo pode ser composto por
dois termos, sendo que um deles em fase com a velocidade e o outro em fase com a

aceleragdo, como esté definido nas equacgfes a seguir:

C., = Cp, sin(p) Eq. 3.11
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Crq = Crcos () Eqg. 3.12
C,,,. componente do coeficiente de sustentacdo em fase com a velocidade

C,4: componente do coeficiente de sustentacdo em fase com a aceleracéo

Substituindo as equacdes 3.8 e 3.9 na equacédo 3.2 e deixando esta em sua forma
adimensional, tem-se as relacdes entre a amplitude do movimento e as forcas fluidas
atuantes no cilindro. Sarpkaya (1977), Bearman (1984) e Khalak;Williamson (1996)
mostram esta derivacdo em detalhe, embora a forma desta solugdo possa ser
apresentada em diversas maneiras. As solucdes destas equagdes representadas em
termos da amplitude adimensional e do coeficiente de massa adicionada sé&o

fornecidas por:

Vyn2C
% = T Eq. 3.13
41 Em '
C = —cta Eq. 3.14
m %npDZSyO C

O coeficiente de massa adicionada (C,,), que estd relacionado com a forca de
sustentacdo em fase com a aceleracdo, é uma funcéo da amplitude e da frequéncia.
Além disso, a amplitude do movimento do cilindro esta relacionada com a forga de
sustentacdo em fase com a aceleracdo e € afetada pela velocidade reduzida
nominal (V,,), a razdo entre a frequéncia de excitacdo e a frequéncia natural (f/f,),

0 parametro de massa (m*) e o parametro de amortecimento ({).

3.3.6 Vibracdes com dois graus de liberdade

No estudo na vibracdo de um cilindro em dois graus de liberdade, os movimentos do
cilindro nas dire¢cdes longitudinal (paralela) e transversal ao escoamento sao
senoidais. Além disso, o sistema é modelado como sendo massa-mola-amortecedor

em dois graus de liberdade, como € visto na seguinte figura:
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Figura 5 - Sistema massa-mola-amortecedor em dois graus de liberdade (DAHL, 2008)

As equacdes de movimento de um cilindro rigido para dois graus de liberdade sdo

dadas por:

m,y + b,y +k,y=1L Eq. 3.15
My X + byX + kyx = Df Eg. 3.16
y = yosin (wt) Eq. 3.17
X = xpsin (2wt + 0) Eq. 3.18

Como é visto nas equacfes 3.17 e 3.18, os movimentos longitudinal e transversal
sao representados por sendides defasadas entre si por um angulo 8. O acoplamento
entre as equacodes diferenciais de movimento (egs. 3.15 e 3.16) se da pela relacdo
entre a forca de sustentacado (L) e a forca de arrasto (Df). Os parametros de forca
para o movimento longitudinal sdo calculados da mesma maneira do movimento
transversal, porém deve-se considerar a frequéncia como sendo o dobro a

correspondente ao movimento transversal.
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3.3.7 Vibragao induzida por vortices em cilindros flexiveis

Um riser (cilindro flexivel) pode ser modelado como uma viga sob tensédo devido a
uma forca fluida externa, conforme feito por Mukundan (2008). Desta maneira,

define-se alguns parametros utilizados na sua modelagem:

[: comprimento do cilindro flexivel
m: massa por unidade de comprimento
b: amortecimento estrutural

EI: rigidez flexional

Como os movimentos provocados por VIV possuem amplitudes da ordem do
diametro do cilindro flexivel, a dindmica estrutural pode ser descrita utilizando-se de
um modelo linear. A figura 6 a seguir mostra um cilindro flexivel modelado como uma

viga sob tenséao, esticado ao longo da direcao z.

fﬂm’a‘ {:‘ T)

Mansaiinainiinig

z=0 z=L

] —-—
[ —-

Figura 6 - Um cilindro flexivel modelado como uma viga. Extraido de MUKUNDAN, 2008

A equacgao governante da oscilagcéo transversal desta viga entre z=0 e z = [, sob
uma tensdo T e uma forca fluida f(z,t) variante no tempo na direcdo y é dada pela

seguinte expressao:
oy 0_y__( a_Y) i( BZ_Y) _
m—+b T ~ )t Elaz2 = f(z1t) Eqg. 3.19
A forga f(z,t), variante no tempo, é uma fungdo do movimento da estrutura e tem

uma origem hidrodinamica. Entretanto, a oscilagdo da estrutura é sincronizada com
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as forcas oriundas do VIV quando a reacdo € temporariamente estacionaria. O
movimento de resposta em regime permanente de um cilindro flexivel pode ser

escrito na seguinte forma:
y(z,t) = Re{Y (z)e'“t} Eg. 3.20

A forca fluida f(z,t) pode ser escrita através de uma aproximagdo aonde assume-se
que segmentos do cilindro flexivel se comportam como cilindros rigidos. Usando esta
aproximacgdo, a parte harmonica da forga fluida € escrita em duas partes, como é
descrito a seqguir:

c. (|Y<z)|’ r(2)>
74

(07 ™) (Y@ +|
f(z,t) = Re ) gtwt Eq. 3.21
Y (2)] pr Y(2)
+i CL”( ’ (Z))( 2 )IY(Z)l
onde,

U(z): Velocidade do escoamento local (assumida como constante),

ps: densidade do fluido.

De acordo com a equacdo anterior, uma parte da forca estd em fase com a
velocidade e a outra parte, em fase com a aceleracédo (forca de massa adicionada).

O coeficiente de massa adicional C,, (obtido experimentalmente) e o coeficiente de
sustentacdo em fase com a velocidade C;,, podem ser usados na estimativa da forca

de excitacdo que o fluido exerce sobre o cilindro. Uma observacao que deve ser feita
IY(Z)I

€ que, neste caso, estes coeficientes sdo funcdo da amplitude reduzida local ( ) e

da velocidade reduzida local (V;.(z)), a qual é definida por:

V.(z) = 2"”(2) Eq. 3.22
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Substituindo as equacdes 3.20 e 3.21 na equacéao 3.19, temos:

ay

[(—wzm + ibw)Y — :—Z (T E) + & (EI Z%)] el®t = [Cm (pf

0z2

ICLvpfU22DV(2)Y (z)eiwt

Eq. 3.23

A equacao 3.23 pode ser reescrita na seguinte forma:

2Ilm+C mD +iwb|Y (’)(T(W>+(92 Elazy =
i AV 4 W 0z\ 0z) 0z> 9z2 |

Eq. 3.24

) (¥ () +

Com as condicfes de contorno adequadas, a equacao 3.24 representa um problema

de autovalor ndo-linear. A nédo-linearidade da equacao é devido a presenca dos

termos Y (2)/1Y (2)|, Cy, € Cy,, 0S quais dependem de Y e w.

A resolucdo deste problema nédo-linear de autovalor é, entretanto, muito complexa,

sendo necesséario achar uma solucdo alternativa para o problema. Uma forma

alternativa do problema né&o-linear de autovalor pode ser obtida multiplicando os dois

lados da equacdo 3.24 pelo conjugado de Y,(z) e realizando uma integragdo por

partes (considerando nulas as condi¢cdes de contorno). A seguir, tem-se essa forma

alternativa:

!
f T dyY

dz
=0

2
+ EI

2

2
12 + ibw|Y|2> dz

z

l
nD?| . , prU?
= f m+Cmpr |Y|“dz +icy, >
z=0

Eq. 3.25

p)m)az

As partes real e imaginéria da equacao 3.25 podem ser mostradas separadamente,

como é descrito a seguir:
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l l
dy? dzy|* , nD?]
f T‘E + EI W dz=w f m+Cmpr |Y| dz
z=0 z=0
l l
U2
fbw|y|2dz= chv<pf2 D>|Y|dz
z=0 z=0

Eq. 3.26

Em uma abordagem de conservacao de energia, as equacdes 3.25 e 3.26 possuem
um significado fisico. A equacéo 3.25 pode ser vista como um balanco de energia
cinética — potencial. A equacdo 3.26 pode ser vista como um balanco entre a
poténcia fornecida pelo fluido ao cilindro flexivel e a poténcia dissipada através do

fluido e o amortecimento estrutural.
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4. Método numérico para simulacdes com VIV

Para o caso de um corpo rigido montado em uma base elastica e submetido a forcas
provocadas pelo escoamento, pode-se aplicar as equacdes de Navier-Stokes em

escoamentos incompressiveis com condi¢des de contorno moéveis, como é descrito a

sequir:
V.v=0 Eg. 4.1a
% + (v.V)v = —Vp + vW?v Eqg. 4.1b
v=v,(t) em I(t) Eq. 4.1c
Sendo que:

v : velocidade do fluido

p : presséao reduzida

O termo I'(t) denota a regido de interface entre 0 escoamento e 0 Corpo e se move a
uma velocidade desconhecida v, (t).

A equacdo estrutural mostrada a seguir descreve o0 movimento do corpo:

028 96
L(m@,@) =f(v,v,p), Eq. 4.2

onde considera-se que L € um operador linear e § é uma variavel que descreve o
movimento do corpo, podendo ser, por exemplo, o deslocamento vertical.

Ao invés de resolver diretamente o sistema acoplado composto pelas equacdes 4.1
e 4.2, uma maneira alternativa mais eficiente consiste em resolver as equacdes de
Navier-Stokes e estruturam explicitamente e entdo desacoplar suas solucfes a cada
passo de tempo, conforme feito por Li; Sherwin; Bearman (2000). Desta forma, a
cada passo de tempo, resolve-se as equacdes de Navier-Stokes de modo a obter as
forcas aerodinamicas atuantes no corpo. Estas for¢cas funcionam como entrada na
equacado estrutural, a qual fornece a velocidade do corpo no proximo passo de
tempo. Apos isso, as velocidades do corpo sdo utilizadas na resolucdo da equagéo
do fluido.

21



Para a resolucdo das equacgOes de Navier-Stokes com condigcbes de contorno
moveis existem algumas abordagens, sendo que a mais geral € realizada pelo
método Arbitrario Lagrangiano-Euleriano (ALE). Em tal abordagem a malha
computacional se deforma continuamente, fazendo com que o algoritmo de solucéo
da equacéo discreta de Navier-Stokes se altere a cada passo de tempo. Portanto,
através desta abordagem, ndo é possivel usar algoritmos de solugdo diretos para
malhas estéticas.

Uma outra maneira de resolver o problema de escoamento com condicdo de
contorno movel para um corpo rigido montado em uma base elastica seria
acoplando um sistema de coordenada no corpo e resolver as equacdes de Navier-
Stokes em uma referéncia movel. Um exemplo disso seria aplicando uma
transformacao de coordenadas em um cilindro rigido.

Neste trabalho, sera apresentado este ultimo método, o qual é descrito na secdo a

seqguir.

4.1 Desenvolvimento do método numérico

Para o desenvolvimento das expressdes que regem o movimento do cilindro nao
sera considerado o fenbmeno de rotagcdo. Portanto, assume-se que 0O COrpo se
movimenta em translacdo com um deslocamento d = (g(t), h(t)) em um referencial
absoluto (x',y"). Desta maneira, pode-se acoplar um referencial mével no cilindro

através das seguintes transformacdes:

x'=g(t)+x
y' =h()—y
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Figura 7 - Sistema de referéncia absoluto e relativo (movel)

No sistema de equacdes anterior, as coordenadas x e y correspondem ao sistema
de referéncia movel acoplado ao cilindro enquanto que g(t) e h(t) correspondem as
coordenadas da origem do referencial mével no sistema de referéncia absoluto,

como pode ser observado na figura 7.

4.1.2 Transformacéo das Equacfes de Navier-Stokes

Nesta secado, para fazer as transformacfes, serd utilizada a notagdo matriz/vetor,

portanto:

x' =d+ Ax Eq. 4.3 a
x=AT(x' —d) Eq.4.3Db

onde,
x=0n", xX'=x,y)

At O w8

A velocidade do referencial movel pode ser obtida através da diferenciacdo da

equacao 4.3 b:

23



v=AT(v' —d) Eq. 4.4

Portanto, a velocidade do corpo no sistema de referéncia absoluto é dada por:

v =Av+d Eq. 4.5

Sabe-se também que:

a _ 0 ox 0 dy 0
dxr  9x dxr dy dxr T ox Eq' 46a

a d ox a 0 d
—=—=p—X = Eq.4.6b
ayr dx dyr 0y dyr dy

Considerando as relacdes anteriores, pode-se definir que:

V'=AV, (V)%= (V)? Eq. 4.7
Portanto:
Vv =V.v Eq. 4.8 a
V'p = AVp Eq.4.8b
(VH2.v' = AV? v Eg.4.8c

O termo nao linear presente no referencial mével pode também ser escrito na

seguinte forma:
(v'.V)v =[(Av+d).AV]|(Av+d) = A[(v+ATd).V]v=A[(v.V)v + ((ATd) . V)v]

Adotando os subscritos ‘@’ e ‘r para se referir aos referenciais absoluto e relativo

(mével), respectivamente, pode-se chegar as seguintes equacoes:
0) ~2o, 00y, (0)
(at)a oot T dy ot + 5 r Eq. 4.9

(@)a = (v, . V)V + (%) Eqg. 4.10

at .
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onde

at) 4

Substituindo as equacdes 4.5 e 4.11 na equacdo 4.10, chega-se ao seguinte

resultado:

@_‘:) = [(-A"d).V][A(v+ATd)] + % (Av + d),

a

=A[(-ATd).V[v+Av+d+A (@>
at/,

= A{(%) +1(-Avd) vl + ad}
Eq. 4.12

Com isso, pode-se entédo substituir as equacoes 4.8, 4.9 e 4.12 nas equacdes 4.1 de
Navier-Stokes, resultando nas equacdes de Navier-Stokes para o referencial mével:

V.v=0 Eq.4.13 a
% + (v.V)v = —Vp + vW?v + G(v, t) Eq.4.13 b

Sendo G(v,t) = —ATd.
A equacao da vorticidade pode ser encontrada através das equacdes 4.5 e 4.6,

resultando na seguinte expressao:

’ dvr  ow v Odu
= ——=_Z_—== Eq. 4.14
w axr oy dx 0y w q

A expressdo anterior mostra que a transformacdo ndo altera a vorticidade. A
explicacdo para isso reside no fato do cilindro ndo apresentar rotacdo em torno do
seu eixo.

O desenvolvimento das equacdes de Navier-Stokes apresentado nesta secao
mostra que, em movimentos ndo acelerados, o problema envolvendo um corpo que
se move em um escoamento uniforme é equivalente ao de um corpo estacionario em

um escoamento que se move.

25



4.1.3 Forga e momento atuantes no cilindro

As forcas e momentos que atuam no cilindro podem ser decompostas em
componentes paralelos e perpendiculares a direcdo da velocidade do fluido no
escoamento. Estas decomposi¢Bes serdo utilizadas no solucionador numérico, o
qual é discutido posteriormente neste trabalho.

A forca exercida pelo fluido no cilindro € um resultado da integracédo da tenséo local
(o) ao longo de toda a superficie do corpo. Tal tensdo é composta pela soma vetorial
da presséo local do fluido (p) e da tenséao de cisalhamento local (7). Assim, desta

forma chegam-se as seguintes expressoes:

o=-pl+7 Eqg. 4.15

szan’ds’ —fpn’ds'—i—fr n'ds'=F,+F,

Eq. 4.16

Nas equacdes anteriores, n' é o vetor unitario normal a superficie do cilindro e que
aponta para fora deste e F', e F', séo as componentes correspondentes a presséo
do fluido e a forca viscosa, respectivamente. O que se deve notar é que a integral
anterior esta definida no sistema de referéncia absoluto. Porém, forca total F
exercida no cilindro pode ser encontrada também através das componentes da forca
no sistema de referéncia relativo (F, e F,) utilizando a transformacao pela matriz A,

como é mostrado a seqguir:
F=F,+F,=A(F,+F) Eq. 4.17

O momento (M’) em relacdo a um ponto P é definido no referencial absoluto por:

M = fr’ A(o.n")ds = — f p(r' An')ds' + jg r'A(r.n")ds'=M', + M,
Eq. 4.18
Na expressdo do momento, r' é o vetor raio entre o ponto P e o elemento na

superficie do cilindro. Se for considerado que P =d, ou seja, 0 momento é em

relacéo ao centro do cilindro, e que x’ pertence a superficie deste, entéo:
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r=x'"-d=d+Ax—-d = Ax Eq. 4.19

Portanto, em um caso bidimensional, resulta a seguinte expressao:

M =M= —jgp(x/\n)ds+3€x/\(r.n)ds

Eq. 4.20

Desta maneira, pode-se calcular o momento em um sistema de referéncia relativo

(mével).

4.1.4 Equagéo de movimento do cilindro

Em um corpo rigido que se move em duas dimensdes com rotacdo nula, seu
movimento pode ser descrito através de dois componentes de deslocamento (6, e

d,), sendo um na diregé@o x e o outro na dire¢do y. Assim, pode-se escrever o vetor

deslocamento (X) na seguinte forma:
X =(6;,6,)7 Eq. 4.21
A equacdo que rege o movimento do cilindro é, portanto:
MX+CX+KX=F Eq. 4.22

onde M, C e K sdo as matrizes de massa, amortecimento e rigidez, respectivamente,
e F é o vetor que possui os componentes das forcas externas que atuam no cilindro.
Para resolver a equacao 4.22, pode ser empregado o método trapezoidal, descrito

através das equagdes a seguir:

1

Xl = X" + SAt(V" + LA Eq.4.23 a
yntl =y 4 %At(B" + B Eq. 4.23 b
MB"*1 + cvntl + KXt = Frtl Eqg.4.23 ¢
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onde X", V* e B™ sdo aproximacdes numéricas para X, X e X, respectivamente no
instante de tempo t, =nAt. Neste esquema, pode-se notar que ndo ha a
necessidade de se avaliar o termo de forca F no instante de tempo n + 1. Entretanto,
para um algoritmo acoplado de interacdo fluido-estrutura, é necessario que F**! seja
independente de V**1, e portanto, ndo pode ser avaliado diretamente. Considera-se

entao a seguinte aproximagao:

Frtl ~ BF + (1 — B)F™! Eq. 4.24

onde o parametro S € utilizado como um parametro de extrapolacdo. Se f = 3/2,

por exemplo, tem-se uma extrapolacido de segunda ordem para F**1.

4.1.5 Algoritmo de acoplamento

Um procedimento computacional para o acoplamento entre fluido e estrutura é
mostrado a seguir.
Depois de ter calculado a solucéo no instante de tempo n, executam-se 0s seguintes
passos:
a) Calcular o vetor forca F" e utilizar a aproximacado por extrapolacéo (Eg. 4.24)
para se obter F**1,
b) Resolver o sistema das equagdes estruturais (Eqgs. 4.23) para se obter X"*1,
. Vn+1 e Bn+1_
c) Resolver as equacfes de Navier-Stokes (Eqgs. 4.13) para os instantes t, e
tn+1 Usando os resultados de V1,

d) Atualizar n = n + 1 e retornar ao passo a).

4.1.6 Discretizagao temporal das equacdes de Navier-Stokes

As equacdes de Navier-Stokes para escoamento incompressivel em um referencial

movel pode ser escrita na forma:
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2 = —Vp + VL(v) + N(V) Eq. 4.25
onde
L(v) = V?v

N(v) = —v.Vv+ G(v,t)

e G(v,t) = —A"d, como havia sido definido anteriormente. Os termos p e v
correspondem respectivamente aos vetores pressao e velocidade.
O esquema de discretizacdo temporal para 0 método numérico pode ser dividido em

trés passos:

PVl BN Eq.4.26a
e Eq. 4.26 b
valt_v* = vz{;;()l Y L(v*179) Eq. 4.26 C

No primeiro passo, os termos de forca e advecgéo néo linear sdo obtidos através de
uma forma convectiva a qual é integrada no tempo utilizando um esquema Adams-
Bashforth multinivel indicado pelos coeficientes f,,.

No segundo passo, a pressdo média no tempo (p) é obtida pelo divergente de Eq.
23c, assumindo V.v* = 0, para chegar na equacgéo de Poisson com as condi¢des de

contorno, como é apresentado na seguinte expressao:

dpn+1 { vl — Vn} Jem1
=n.{———t—n. E Bel(v. VIV-—G+VV A (V AV
on At =

Eq. 4.27

Tais condi¢cOes de contorno asseguram que o erro de divisdo associado ao esquema

€ consistente com a discretiza¢do temporal geral.
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4.1.6 Discretizacdo espacial das equacdes de Navier-Stokes através do Método
de Elementos Espectrais

O software utilizado nas simulagbes do presente trabalho emprega o Método de
Elementos Espectrais na discretizacdo das equagOes diferenciais parciais
provenientes da modelagem do problema em questdo. Os principais conceitos e
caracteristicas de tal método sdo detalhados nesta secao.

O tipo de escoamento dos experimentos deste trabalho é governado pelas equacdes
de Navier-Stokes visto que se trata de um escoamento viscoso incompressivel de
um fluido newtoniano.

Tais equagOes podem ser escritas em sua forma adimensional tendo o diametro D
como comprimento de referéncia e a velocidade de escoamento ao longe U., como

velocidade de referéncia. A equacédo entdo é escrita na seguinte forma:

du 1
M u.u— — p2 Eq. 4.28
5% (u.V)u \7p+Rel7 u q

V.u=0 Eqg. 4.29

sendo que u = ui + vj + wk 0 campo de velocidades, t € o tempo, p € a pressao
estatica e Re = pU..D/u é o nUmero de Reynolds, onde u € a viscosidade dindmica
do fluido em questéo.

Para que as equacles diferenciais parciais 4.28 e 4.29 possam ser resolvidas
numericamente por um algoritmo computacional, elas precisam ser discretizadas
apropriadamente. No Método de Elementos Espectrais o esquema de discretizacédo
€ baseado em dois métodos previamente conhecidos: o Método dos Elementos
Finitos (FEM) e o Método Espectral Classico.

A principal ideia do Método dos Elementos Finitos € dividir o dominio de interesse
(Q) em subdominios que ndo se sobrepdem, conhecidos também como elementos
(Q°), e calcular a solugdo da equacéo através de uma sequéncia de aproximacoes
encontradas em cada elemento do dominio. Tais aproximac¢des consistem de
combinacdes lineares de fun¢bes de base, as quais possuem certas caracteristicas

que asseguram a continuidade da aproximacédo da solucédo global no dominio de
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interesse Q. A convergéncia da solucdo através deste método pode ser obtida
através do refinamento da malha no dominio Q, visto que as funcdes de base
empregadas neste método sédo geralmente de baixa ordem (polinémios lineares ou
quadraticos).

O Método Espectral Classico, por sua vez, ndo emprega nenhuma discretizacéo
espacial, entretanto ele se utiliza de funcdes de alta ordem para aproximar a solucéo
das equacoes diferenciais em todo o dominio.

O Método de Elementos Espectrais € proveniente da jungdo das duas principais
caracteristicas dos métodos descritos anteriormente, ou seja, o uso de funcdes de
alta ordem como funcdes de base na discretizacdo espacial do Método dos
Elementos Finitos. Isso permite que a convergéncia da solucdo seja obtida de duas
maneiras: pelo refinamento da malha, conhecido como convergéncia h, ou
aumentando a ordem das fun¢des de base, conhecido como convergéncia p.

Neste trabalho, foi adotada um discretizacdo espacial utilizando o método dos
elementos espectrais. O dominio o qual esta inserido o cilindro é dividido em
subdominios triangulares. Deste modo, a solucdo € expandida dentro de cada

subdominio utilizando uma expansao polinomial arbitraria de ordem p.

4.2 Validagéo e simulagdo do escoamento

Tomando os termos da equacdo de Navier-Stokes em sua forma adimensional,

chegam-se as seguintes equacoes:

Vi.v=0 Eqg. 4.28 a

ov*

S (V. VOV = —Vp 4+ ReTH (V)Y Eq. 4.28 b

Os termos adimensionalizados nas equacgdes anteriores sao 0s seguintes:
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_pUD _UD
===

Re

onde D, U, e p séo o diametro do cilindro, a velocidade ao longe do escoamento e a
densidade do fluido, respectivamente. Da mesma maneira, foram
adimensionalizados os termos de forca:

F, F,

* *

E =——; E, =——
*  pDU? Y pDU?

Em relacdo aos termos adimensionais, € interessante observar que C, = 2F," e
C, = 2F,”. Além disso, n&o foi considerando o termo que diz respeito a0 momento,
pois este é nulo, devido ao fato de o cilindro ndo sofrer rotagéo.

Outros termos adimensionais importantes sdo o parametro de massa (m*), a

velocidade reduzida (V) e a amplitude adimensional (4%):

m-=—-: Vr:—- A*

Il
(ol e N

4.2.1 Oscilacao vertical forcada

O movimento senoidal forcado de um corpo rigido pode ser descrito através da

seguinte equacdo de movimento:

y(t) = Acos(2mft) Eq. 4.29

Em tal situacdo, a frequéncia de emissédo de vértices pode ser controlada em uma
certa faixa de valores de velocidade reduzida. Este fendmeno, conhecido como lock-
in, acontece quando a frequéncia de emissdo de vortices e a frequéncia de oscilacéo
do corpo se sincronizam. Tanto em procedimentos experimentais quanto em
simulagbes numeéricas, foi mostrado que este fendmeno de sincronizacdo ocorre

somente acima de um determinado valor de amplitude de oscilacéo.
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4.2.2 Oscilacéo vertical livre

A equacdao gque descreve o movimento de oscilacéao vertical livre pode ser escrita em

sua forma adimensional da seguinte maneira:

i+ 26 (3) + (&) 'y =2 Eq.430

v

onde ¢ corresponde a um fator de amortecimento na direcao y.

4.2.3 Oscilagéo longitudinal livre

A equacdo que descreve o movimento de oscilacdo longitudinal livre pode ser escrita

em sua forma adimensional da seguinte maneira:

%+ 26 () + (&) 'x =& Eqa31

onde ¢ corresponde a um fator de amortecimento na diregao x.
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5. Simulagdes numeéricas para os casos de 1 e 2 graus de liberdade

5.1Teste de convergéncia

Para que as simulacdes pudessem fornecer resultados coerentes, primeiramente, foi
realizado um teste de convergéncia. Neste teste, foram utlizadas varias
configuragcbes de malhas de modo a obter uma malha definitiva que simulasse de
maneira proxima ao caso real a um custo computacional relativamente baixo. Para
isso, foram utilizados alguns parametros de convergéncia, 0os quais sao descritos a

seqguir:

P: ordem do grau do polinémio do algoritmo computacional;

W: distancia vertical entre as extremidades inferior e superior da malha;

La: distancia horizontal entre a extremidade esquerda (montante) da malha e o
centro do cilindro;

Lb: distancia horizontal entre o centro do cilindro e a extremidade direita (jusante) da

malha.

O critério de convergéncia foi baseado na convergéncia dos valores do coeficiente
de arrasto (Cp) e do niumero de Strouhal (St) para cada parametro.
O teste de convergéncia foi realizado da seguinte maneira:
1) Determina-se uma malha inicial com valores arbitrarios de parametros
geométricos;
2) Sao feitas, entdo, algumas simulac¢des alternando o parametro polinomial (P);
3) Feito isso, determina-se o grau de polindbmio o qual o C, e o St convergem
com um erro menor que 1,5%;
4) Obtido o grau do polinémio, fazem-se entdo algumas simulacdes alternando o
parametro W e deixando 0s outros parametro constantes;
5) Feito isso, determina-se o valor de W o qual o C, e 0 St convergem com um
erro menor que 1,0%;
6) Obtido o valor definitvo de W, fazem-se entdo algumas simulacbes

alternando o parametro La e deixando os outros parametro constantes;
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7)

8)

9)

Feito isso, determina-se o valor de La o qual o C, e 0 St convergem com um
erro menor que 1,0%;

Obtido o valor definitivo de La, fazem-se entdo algumas simulacdes
alternando o parametro Lb e deixando os outros parametro constantes;

Feito isso, determina-se o valor de Lb o qual o C, e 0 St convergem com um

erro menor que 1,0%;

10) A malha definitiva € obtida.

No teste de convergéncia realizado, chegou-se aos seguintes valores definitivos (em

unidades adimensionais):

A malha definitiva utilizada nas simulacdes € ilustrada a seguir nas figuras 8 e 9.

15

10

-10

La

Lb

25

20

20

-20

-10

Figura 8 - Malha definitiva

10

20



Figura 9 - Malha definitiva (cilindro)

5.2 Simulacdes

Depois de ter obtido a malha definitiva, foram executadas as simula¢cdes numéricas
para o caso em questao.

A primeira bateria de simulac¢des consistiu no movimento com um grau de liberdade
do cilindro na direcdo transversal ao escoamento (dire¢cdo y), sendo, portanto,
restringido o seu movimento na direcao longitudinal (direcdo x). Na segunda bateria,
foi considerado tanto o movimento longitudinal quanto o transversal, sendo, portanto,
um movimento com dois graus de liberdade. O movimento de rotagdo do cilindro foi
restringido em todas as simulagdes.

Os parametros utilizados em todos os casos foram os seguintes:

Up,=1m/s
v =1/150 m?/s
D=1m
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U, velocidade do fluido ao longe
v: viscosidade cinematica do fluido

D: diametro

Portanto, com estes parametros, obteve-se Re = 150.

5.3 Resultados

5.3.1 Movimento com um grau de liberdade (1 DOF)

Os resultados obtidos nas simulagfes para o caso de um grau de liberdade (1 DOF)
(graficos 1 ao 3) mostram as respostas tipicas de vibracdes induzidas por vortices
para baixos numeros de Reynolds. Pode-se perceber que existe uma faixa de
valores a qual acontece o fenbmeno de sincronizacdo (lock-in), onde a frequéncia de
emissao de vortices se aproxima a um valor préximo a frequéncia natural da
estrutura. O fendmeno de lock-in pode ser dividido em duas partes: a parte inicial e a
parte final (decrescente). A parte inicial abrange a faixa de velocidade reduzida (V})
entre aproximadamente 3,0 e 4,5. E inclusive nessa faixa que a amplitude atinge o
valor maximo, que é de aproximadamente A/D =~ 0,58. O angulo de fase nessa
regido esta proximo de 0° Os pontos contidos na faixa 4,5 <V, < 5,5 mostram a
transicdo entre a parte inicial e a parte decrescente, correspondendo a uma rapida
mudanca do angulo de fase de um valor préximo a 0° a um valor perto de 180°. A
parte decrescente do fendmeno de sincronizacdo continua até uma velocidade
reduzida de aproximadamente 7,5 e, para V. > 8,0 as amplitudes de vibracdo se

mantém baixas (A/D < 0,05) e com um angulo de fase muito préximo de 180°.
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Grafico 1 — Amplitude Vs Velocidade Reduzida (1 DOF)
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Grafico 2 — Coeficiente de arrasto Vs Velocidade Reduzida (1DOF)
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Grafico 3 - Frequéncia Vs Velocidade Reduzida (1DOF)
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5.3.2 Movimento com dois graus de liberdade (2 DOF)

Os graficos obtidos no movimento com dois graus de liberdade (2 DOF) (graficos 4
ao 7) seguem a mesma tendéncia do de 1 DOF, com a diferenca devido ao
aparecimento da amplitude no movimento longitudinal (A,/D). Entretanto, sua
amplitude € muito menor que a correspondente ao movimento transversal (4,/D),
sendo que 0 seu maximo valor atinge A, /D = 0.0095, enquanto o maximo valor de
A,/D éde A, /D ~ 0,58. As faixas de velocidade reduzida relativas aos trechos inicial
e final (decrescente) do fendmeno de sincronizagdo s&o praticamente as mesmas

obtidas no movimento com 1 DOF.
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Gréfico 4 — Amplitude Longitudinal Vs Velocidade Reduzida (2DOF)
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Grafico 5 - Amplitude Transversal Vs Velocidade Reduzida (2DOF)
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Gréfico 6 — Coeficiente de Arrasto Vs Velocidade Reduzida (2DOF)
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Grafico 7 — Frequéncia Vs Velocidade Reduzida (2DOF)
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A seguir sado ilustradas figuras representando os campos de pressfes e de

velocidade longitudinal (1) em alguns casos de 1 DOF.
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Figura 10 — Campo de velocidades (u) com Vr =2,0 — 1DOF
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0 1 0 |

Figura 11 - Campo de velocidades (u) com Vr = 5,0 - 1DOF
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-4 2 0 i 4

Figura 12 - Campo de pressdes com Vr = 2,0 — 1DOF

Figura 13 - Campo de pressdes com Vr =5,0 — 1DOF
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6. Simulagdes numéricas 3D

6.1 Teste de convergéncia

Para que as simulacdes pudessem fornecer resultados coerentes, foi realizado um
teste de convergéncia para simulagdes tridimensionais assim como nos casos com 1
e 2 DOF. Diferentemente do que fora feito anteriormente, os parametros envolvidos
para a execucao do teste foram outros, uma vez que a malha definitiva ja fora obtida
e, portanto, ndo sendo necessario alterar os parametros de malha. Portanto, utilizou-
se do numero de modos na dire¢ao do eixo (Z) como parametro de teste.

O objetivo deste teste de convergéncia é obter o valor minimo de Z no qual os
resultados convirjam. A escolha de um valor minimo de Z tem o como intuito a
realizacdo futura de simulacdes tridimensionais com uma boa precisdo e a0 mesmo
tempo um minimo custo computacional.

Para este teste de convergéncia, foi escolhido um ndmero de Reynolds igual a 300.
Visto que a turbuléncia aumenta quanto maior for o valor de Re, procurou-se utilizar
o valor escolhido para o caso critico de uma situacao.

A malha empregada para este teste € a mesma obtida no teste para 1 e 2 DOF
(Figuras 8 e 9), a qual apresenta um refinamento na regido de esteira proxima.
Assim como nos casos com 1 e 2 DOF, o critério de convergéncia foi baseado na
convergéncia dos valores do coeficiente de arrasto (Cp) e do nimero de Strouhal (St)
para cada parametro. Com o objetivo de se obter valores mais consistentes tanto de
Cp, quanto de St, as simulagbes foram realizadas com 250 passos de tempo
adimensionais com comprimento peridédico L = 5D. Para minimizar os custos
computacionais, a resolucao de St escolhida para este teste € 0,005.

Os valores de Z obtidos no teste sdo apresentados na tabela a seguir.

Numero de modos (2) Cp St
16 divergiu | divergiu
32 1,287 0,205
48 1,282 0,205
64 1,291 0,210

Observa-se nos valores tabelados que tanto o coeficiente de arrasto quanto o

namero de Strouhal variam muito pouco com os valores de Z que ndo divergem (32,
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48 e 64), sendo uma diferenca de menos de 1% para C, e aproximadamente 2,5%
para St.
Portanto, foi o escolhido o0 menor valor do numero de modos entre eles, Z = 32, para

a execucao das simulagdes dos escoamentos tridimensionais.

6.2 Simulacdes

Depois de ter obtido o valor do nUmero de modos para o caso tridimensional junto
com a malha definitiva, as simula¢cées numéricas foram executadas para 0 caso em
guestéo.

Esta bateria de simulacdes consistiu no movimento com dois graus de liberdade do
cilindro rigido em suas direcdes transversal (direcdo y) e longitudinal (direcdo x) ao
escoamento, sendo semelhante ao caso descrito no item 5.2. Entretanto, para este
caso, considerou-se também uma profundidade de 5D na direcdo z, dando portanto
um carater tridimensional para este experimento.

Em cada teste simulado foi adotado um valor especifico de velocidade reduzida Vr
variando-o de 2 a 10, de modo a se verificar a resposta do movimento em cada
caso.

Os parametros que foram utilizados nestas simulacdes sdo os seguintes:

Uy, =1m/s

v =1/300 m?/s
D=1m
Re = 300
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6.3 Resultados

Os resultados obtidos nas simulacdes tridimensionais ndo diferem muito dos que
ocorrem no caso com 2 DOF sem a profundidade na direcéo z, com a regiao de lock-
in ocorrendo na faixa de valores de velocidade reduzida entre aproximadamente 3,5
e 7,0.

O que se pode notar de diferente sédo os valores maximos das amplitudes e do Cd
gue sdo menores devido a estrutura tridimensional considerada. Neste caso, Ay/D
maximo esta em torno de 0,51 ao passo que 0 Cd maximo € aproximadamente 2,1.
Em ambos os casos o Vr é préximo de 4,5. Tais resultados sdo apresentados nos

gréficos 8, 9 e 10 a sequir.

Grafico 8 — Amplitude Transversal Vs Velocidade Reduzida (3d)
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Grafico 9 — Coeficiente de Arrasto Vs Velocidade Reduzida (3d)
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Grafico 10 — Frequéncia Vs Velocidade Reduzida (3d)
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A seguir sao ilustradas figuras representando os campos de vorticidade em alguns
casos simulados.
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Figura 14 - Campo de vorticidade (eixo z) com Vr = 4,5 — 3d — Vista frontal

Figura 15 - Campo de vorticidade (eixo z) com Vr = 4,5 — 3d — Vista superior

Figura 16 - Campo de vorticidade (eixo z) com Vr = 2,0 — 3d - Vista frontal



Figura 17 - Campo de vorticidade (eixo z) com Vr = 2,0 — 3d — Vista superior

Figura 18 - Campo de vorticidade (eixo z) com Vr = 8,0 — 3d — Vista frontal

Figura 19 - Campo de vorticidade (eixo z) com Vr = 8,0 — 3d — Vista superior

Nas figuras anteriores (Figs. 14 a 19) pode-se visualizar claramente a formacao da
esteira de voértices e, especificamente, na Fig. 14 ocorre a sua maior intensidade,
devido a frequéncia de emissdo estar muito proxima da frequéncia natural da
estrutura (Vr = 4,5). Além disso, as Figs. 15, 17 e 19 ilustram claramente o carater

tridimensional destas simulagfes através de sua vista superior.



A seguir sdo apresentados trés gréaficos referentes ao deslocamento e forca de

sustentacao para a velocidade reduzida de lock-in (Vr = 4,5).

0.6 T T T I

Grafico 11 — Deslocamento (y) e Forca de sustentagédo (Fy) Vs Tempo —Vr =4,5-3d
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Grafico 12 — Deslocamento (y) e Forca de sustentacado (Fy) Vs Tempo — Vr = 4,5 - 3d (zoom)
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Grafico 13 — Deslocamento (y) Vs Deslocamento (x) —Vr=4,5-3d

Os graficos 11 e 12 mostram a relacéo entre o deslocamento transversal do cilindro
e a forca de sustentacéo presente em relacdo ao tempo. Nota-se no grafico 12 que o
deslocamento e a forca de sustentacdo estdo em fase quando a emisséo de vortices
atinge um regime estavel.

No grafico 13 tem-se uma curva caracteristica desse tipo de movimento, a qual é

resultado de um movimento harménico (Curva de Lissajous).
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7. Conclusdes

Tendo como base os resultados obtidos nas simulagdes, pode-se concluir que o
Método de Elementos Espectrais aliado ao desenvolvimento da abordagem feita
para corpos rigidos constituem uma boa alternativa para analisar casos de
escoamento ao redor de cilindros com numeros de Reynolds relativamente baixos,
pois os resultados fornecidos pelas simulacbes se mostraram coerentes com o
desenvolvimento teo6rico e com o esperado experimentalmente. Além disso, o
fendbmeno de sincronizacdo (lock-in), o qual possui fundamental importancia nesse
tipo de andlise, é identificado claramente nos graficos das simula¢cdes numéricas.
Outro fato importante a ser comentado € que a diferenca entre as simulacdes
tridimensionais e as de dois graus de liberdade (sem considerar a profundidade na
direcdo z) do cilindro rigido para baixos numeros de Reynolds é relativamente
pequena no que se refere a forma dos graficos obtidos, sendo que praticamente
somente os valores maximos sao diferentes. Com isso, pode-se concluir que o caso
com 2 DOF pode ser tomado como uma boa aproximacdo qualitativa do caso
tridimensional para se evitar custos computacionais elevados gerados pelos
parametros adicionais 3d.

Entretanto, algo que foi observado durante o desenvolvimento deste trabalho foi que
as simulacbes se tornam significantemente custosas a medida que se aumenta o
valor da velocidade reduzida. Portanto, este fato também deve ser levado em
consideracdo ao se fazer outros tipos de analise os quais envolvem escoamentos

com numeros de Reynolds mais altos.
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